These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32814776)

  • 21. Synchrony erodes spatial portfolios of an anadromous fish and alters availability for resource users.
    Sullaway GH; Shelton AO; Samhouri JF
    J Anim Ecol; 2021 Nov; 90(11):2692-2703. PubMed ID: 34553382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing fishing and marine biodiversity changes using fishers' perceptions: the Spanish Mediterranean and Gulf of Cadiz case study.
    Coll M; Carreras M; Ciércoles C; Cornax MJ; Gorelli G; Morote E; Sáez R
    PLoS One; 2014; 9(1):e85670. PubMed ID: 24465644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.
    Levi T; Darimont CT; Macduffee M; Mangel M; Paquet P; Wilmers CC
    PLoS Biol; 2012; 10(4):e1001303. PubMed ID: 22505845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change and distribution shifts in marine fishes.
    Perry AL; Low PJ; Ellis JR; Reynolds JD
    Science; 2005 Jun; 308(5730):1912-5. PubMed ID: 15890845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.
    Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A
    Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long time horizon for adaptive management to reveal predation effects in a salmon fishery.
    Walsworth TE; Schindler DE
    Ecol Appl; 2016 Dec; 26(8):2693-2705. PubMed ID: 27875003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Marine and freshwater regime changes impact a community of migratory Pacific salmonids in decline.
    Wilson KL; Bailey CJ; Davies TD; Moore JW
    Glob Chang Biol; 2022 Jan; 28(1):72-85. PubMed ID: 34669231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the potential impacts of climate change on Pacific salmon culture programs: an example at Winthrop National Fish Hatchery.
    Hanson KC; Peterson DP
    Environ Manage; 2014 Sep; 54(3):433-48. PubMed ID: 24993792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One hundred-seventy years of stressors erode salmon fishery climate resilience in California's warming landscape.
    Munsch SH; Greene CM; Mantua NJ; Satterthwaite WH
    Glob Chang Biol; 2022 Apr; 28(7):2183-2201. PubMed ID: 35075737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Population diversity and the portfolio effect in an exploited species.
    Schindler DE; Hilborn R; Chasco B; Boatright CP; Quinn TP; Rogers LA; Webster MS
    Nature; 2010 Jun; 465(7298):609-12. PubMed ID: 20520713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-stationary and interactive effects of climate and competition on pink salmon productivity.
    Ohlberger J; Ward EJ; Brenner RE; Hunsicker ME; Haught SB; Finnoff D; Litzow MA; Schwoerer T; Ruggerone GT; Hauri C
    Glob Chang Biol; 2022 Mar; 28(6):2026-2040. PubMed ID: 34923722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Managing salmon for wildlife: Do fisheries limit salmon consumption by bears in small Alaskan streams?
    Lincoln AE; Hilborn R; Wirsing AJ; Quinn TP
    Ecol Appl; 2020 Apr; 30(3):e02061. PubMed ID: 31863535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal patterns in adult salmon migration timing across southeast Alaska.
    Kovach RP; Ellison SC; Pyare S; Tallmon DA
    Glob Chang Biol; 2015 May; 21(5):1821-33. PubMed ID: 25482609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.
    Mills KE; Pershing AJ; Sheehan TF; Mountain D
    Glob Chang Biol; 2013 Oct; 19(10):3046-61. PubMed ID: 23780876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Climate change, pink salmon, and the nexus between bottom-up and top-down forcing in the subarctic Pacific Ocean and Bering Sea.
    Springer AM; van Vliet GB
    Proc Natl Acad Sci U S A; 2014 May; 111(18):E1880-8. PubMed ID: 24706809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river.
    Taylor BW; Flecker AS; Hall RO
    Science; 2006 Aug; 313(5788):833-6. PubMed ID: 16902137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationships between Pacific salmon and aquatic and terrestrial ecosystems: implications for ecosystem-based management.
    Walsh JC; Pendray JE; Godwin SC; Artelle KA; Kindsvater HK; Field RD; Harding JN; Swain NR; Reynolds JD
    Ecology; 2020 Sep; 101(9):e03060. PubMed ID: 32266971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating covariates into fisheries stock assessment models with application to Pacific herring.
    Deriso RB; Maunder MN; Pearson WH
    Ecol Appl; 2008 Jul; 18(5):1270-86. PubMed ID: 18686586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship of farm salmon, sea lice, and wild salmon populations.
    Marty GD; Saksida SM; Quinn TJ
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22599-604. PubMed ID: 21149706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of multiple stressors on juvenile fish in estuaries of the northeast Pacific.
    Toft JD; Munsch SH; Cordell JR; Siitari K; Hare VC; Holycross BM; DeBruyckere LA; Greene CM; Hughes BB
    Glob Chang Biol; 2018 May; 24(5):2008-2020. PubMed ID: 29341366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.