BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32814827)

  • 21. Detailed Characterization of the Cell Wall Structure and Composition of Nordic Green Microalgae.
    Spain O; Funk C
    J Agric Food Chem; 2022 Aug; 70(31):9711-9721. PubMed ID: 35894177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation, screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy effluent treatment: A sustainable approach.
    Pandey A; Srivastava S; Kumar S
    Bioresour Technol; 2019 Dec; 293():121998. PubMed ID: 31473377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatty acid content and profile of the aerial microalga Coccomyxa sp. isolated from dry environments.
    Abe K; Ishiwatari T; Wakamatsu M; Aburai N
    Appl Biochem Biotechnol; 2014 Nov; 174(5):1724-35. PubMed ID: 25146196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae.
    Peredo EL; Cardon ZG
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17438-17445. PubMed ID: 32636259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and Screening of Native Scenedesmus sp. Isolates Suitable for Biofuel Feedstock.
    Gour RS; Chawla A; Singh H; Chauhan RS; Kant A
    PLoS One; 2016; 11(5):e0155321. PubMed ID: 27195694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Barrancaceae: A new green algal lineage with structural and behavioral adaptations to a fluctuating environment.
    Caisová L; Reyes CP; Álamo VC; Quintana AM; Surek B; Melkonian M
    Am J Bot; 2015 Sep; 102(9):1482-92. PubMed ID: 26391710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production.
    Kaur S; Sarkar M; Srivastava RB; Gogoi HK; Kalita MC
    N Biotechnol; 2012 Feb; 29(3):332-44. PubMed ID: 22044601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Airborne Microalgae: Insights, Opportunities, and Challenges.
    Tesson SVM; Skjøth CA; Šantl-Temkiv T; Löndahl J
    Appl Environ Microbiol; 2016 Jan; 82(7):1978-1991. PubMed ID: 26801574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agrobacterium-mediated transformation of three freshwater microalgal strains.
    Sanitha M; Radha S; Fatima AA; Devi SG; Ramya M
    Pol J Microbiol; 2014; 63(4):387-92. PubMed ID: 25804057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecophysiology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae).
    Lachmann SC; Maberly SC; Spijkerman E
    J Phycol; 2016 Dec; 52(6):1051-1063. PubMed ID: 27624741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway.
    Goecke F; Noda J; Paliocha M; Gislerød HR
    World J Microbiol Biotechnol; 2020 Sep; 36(10):149. PubMed ID: 32914262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological characterization, growth appraisal, and probing biofuels potential of newly isolated Scenedesmus sp. from desert Cholistan.
    Alam MM; Mumtaz AS; Hallenbeck PC; Shah SA; Abidin SZU; Inam F
    Microsc Res Tech; 2019 Dec; 82(12):2079-2088. PubMed ID: 31587425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the content of high value compounds in Nordic Desmodesmus microalgal strains.
    Mehariya S; Plöhn M; Leon-Vaz A; Patel A; Funk C
    Bioresour Technol; 2022 Sep; 359():127445. PubMed ID: 35718245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity of the nitrogen starvation responses in subarctic Desmodesmus sp. (Chlorophyceae) strains isolated from symbioses with invertebrates.
    Baulina O; Gorelova O; Solovchenko A; Chivkunova O; Semenova L; Selyakh I; Scherbakov P; Burakova O; Lobakova E
    FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw031. PubMed ID: 26880784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential.
    Minhas AK; Hodgson P; Barrow CJ; Sashidhar B; Adholeya A
    Bioresour Technol; 2016 Jul; 211():556-65. PubMed ID: 27043053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monoraphidium sp. HDMA-20 is a new potential source of α-linolenic acid and eicosatetraenoic acid.
    Lin Y; Ge J; Zhang Y; Ling H; Yan X; Ping W
    Lipids Health Dis; 2019 Mar; 18(1):56. PubMed ID: 30832728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice Nucleation Activity and Aeolian Dispersal Success in Airborne and Aquatic Microalgae.
    Tesson SVM; Šantl-Temkiv T
    Front Microbiol; 2018; 9():2681. PubMed ID: 30483227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Airborne microalgal and cyanobacterial diversity and composition during rain events in the southern Baltic Sea region.
    Wiśniewska KA; Śliwińska-Wilczewska S; Lewandowska AU
    Sci Rep; 2022 Feb; 12(1):2029. PubMed ID: 35132131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; George B; Ghosh T; Paliwal C; Maurya R; Mishra S
    Bioresour Technol; 2014 Mar; 156():146-54. PubMed ID: 24495540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.
    Pancha I; Chokshi K; Maurya R; Trivedi K; Patidar SK; Ghosh A; Mishra S
    Bioresour Technol; 2015; 189():341-348. PubMed ID: 25911594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.