These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32814865)

  • 1. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles.
    Liu F; Wickham JD; Cao Q; Lu M; Sun J
    ISME J; 2020 Nov; 14(11):2829-2842. PubMed ID: 32814865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial volatile ammonia regulates the consumption sequence of d-pinitol and d-glucose in a fungus associated with an invasive bark beetle.
    Zhou F; Xu L; Wang S; Wang B; Lou Q; Lu M; Sun J
    ISME J; 2017 Dec; 11(12):2809-2820. PubMed ID: 28800134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual interactions between an invasive bark beetle and its associated fungi.
    Wang B; Salcedo C; Lu M; Sun J
    Bull Entomol Res; 2012 Feb; 102(1):71-7. PubMed ID: 21777500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus.
    Xu L; Zhang Y; Zhang S; Deng J; Lu M; Zhang L; Zhang J
    Dev Comp Immunol; 2018 Nov; 88():65-69. PubMed ID: 30017857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharide-mediated antagonistic effects of bark beetle fungal associates on larvae.
    Wang B; Lu M; Cheng C; Salcedo C; Sun J
    Biol Lett; 2013 Feb; 9(1):20120787. PubMed ID: 23193043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-Protein Coupled Receptor
    Ye F; Kang Z; Kou H; Yang Y; Chen W; Wang S; Sun J; Liu F
    J Agric Food Chem; 2024 Feb; 72(7):3354-3362. PubMed ID: 38230891
    [No Abstract]   [Full Text] [Related]  

  • 7. Modeling the pest-pathogen threats in a warming world for the red turpentine beetle (Dendroctonus valens) and its symbiotic fungus (Leptographium procerum).
    Zhou Y; Guo S; Wang T; Zong S; Ge X
    Pest Manag Sci; 2024 Jul; 80(7):3423-3435. PubMed ID: 38407566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducible pine rosin defense mediates interactions between an invasive insect-fungal complex and newly acquired sympatric fungal associates.
    Cheng C; Zhou F; Lu M; Sun J
    Integr Zool; 2015 Sep; 10(5):453-64. PubMed ID: 25939920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts.
    Goodsman DW; Erbilgin N; Lieffers VJ
    Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree Volatiles as Nutrient Sources.
    Liu Y; Anastacio GR; Ishangulyyeva G; Rodriguez-Ramos JC; Erbilgin N
    Microb Ecol; 2021 May; 81(4):1106-1110. PubMed ID: 33404818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Symbioses in Complex Communities: the Fungal Symbionts of Bark and Ambrosia Beetles Within Asian Pines.
    Skelton J; Jusino MA; Li Y; Bateman C; Thai PH; Wu C; Lindner DL; Hulcr J
    Microb Ecol; 2018 Oct; 76(3):839-850. PubMed ID: 29476344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadscale specificity in a bark beetle-fungal symbiosis: a spatio-temporal analysis of the mycangial fungi of the western pine beetle.
    Bracewell RR; Six DL
    Microb Ecol; 2014 Nov; 68(4):859-70. PubMed ID: 25004995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered Carbohydrates Allocation by Associated Bacteria-fungi Interactions in a Bark Beetle-microbe Symbiosis.
    Zhou F; Lou Q; Wang B; Xu L; Cheng C; Lu M; Sun J
    Sci Rep; 2016 Feb; 6():20135. PubMed ID: 26839264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taxonomy and phylogeny of the Leptographium procerum complex, including Leptographium sinense sp. nov. and Leptographium longiconidiophorum sp. nov.
    Yin M; Duong TA; Wingfield MJ; Zhou X; de Beer ZW
    Antonie Van Leeuwenhoek; 2015 Feb; 107(2):547-63. PubMed ID: 25510728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars.
    Vanderpool D; Bracewell RR; McCutcheon JP
    Mol Ecol; 2018 Apr; 27(8):2077-2094. PubMed ID: 29087025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees.
    Bleiker KP; Six DL
    Microb Ecol; 2009 Jan; 57(1):191-202. PubMed ID: 18545867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.
    Therrien J; Mason CJ; Cale JA; Adams A; Aukema BH; Currie CR; Raffa KF; Erbilgin N
    Oecologia; 2015 Oct; 179(2):467-85. PubMed ID: 26037523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evidence of bark beetle adaptation to a fungal symbiont.
    Bracewell RR; Six DL
    Ecol Evol; 2015 Nov; 5(21):5109-19. PubMed ID: 26640686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial microbiota protect an invasive bark beetle from a pine defensive compound.
    Cheng C; Wickham JD; Chen L; Xu D; Lu M; Sun J
    Microbiome; 2018 Jul; 6(1):132. PubMed ID: 30053907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of complementary defense metabolites reflects a co-evolutionary arms race between a host plant and a mutualistic bark beetle-fungal complex.
    Ullah A; Klutsch JG; Erbilgin N
    Plant Cell Environ; 2021 Sep; 44(9):3064-3077. PubMed ID: 34008191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.