These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32815537)

  • 1. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale.
    Paulus S; Mahlein AK
    Gigascience; 2020 Aug; 9(8):. PubMed ID: 32815537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving High-Throughput Phenotyping Using Fusion of Close-Range Hyperspectral Camera and Low-Cost Depth Sensor.
    Huang P; Luo X; Jin J; Wang L; Zhang L; Liu J; Zhang Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection.
    Behmann J; Acebron K; Emin D; Bennertz S; Matsubara S; Thomas S; Bohnenkamp D; Kuska MT; Jussila J; Salo H; Mahlein AK; Rascher U
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root System Phenotying of Soil-Grown Plants via RGB and Hyperspectral Imaging.
    Bodner G; Alsalem M; Nakhforoosh A
    Methods Mol Biol; 2021; 2264():245-268. PubMed ID: 33263915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring crops in 3D: using geometry for plant phenotyping.
    Paulus S
    Plant Methods; 2019; 15():103. PubMed ID: 31497064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of hyperspectral imaging in plant phenotyping.
    Sarić R; Nguyen VD; Burge T; Berkowitz O; Trtílek M; Whelan J; Lewsey MG; Čustović E
    Trends Plant Sci; 2022 Mar; 27(3):301-315. PubMed ID: 34998690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of hyperspectral image analysis techniques for plant disease detection and identif ication.
    Cheshkova AF
    Vavilovskii Zhurnal Genet Selektsii; 2022 Mar; 26(2):202-213. PubMed ID: 35434482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raspberry plant stress detection using hyperspectral imaging.
    Williams D; Karley A; Britten A; McCallum S; Graham J
    Plant Direct; 2023 Mar; 7(3):e490. PubMed ID: 36937793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Throughput
    Pandey P; Ge Y; Stoerger V; Schnable JC
    Front Plant Sci; 2017; 8():1348. PubMed ID: 28824683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatio temporal spectral framework for plant stress phenotyping.
    Khanna R; Schmid L; Walter A; Nieto J; Siegwart R; Liebisch F
    Plant Methods; 2019; 15():13. PubMed ID: 30774703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote Sensing Techniques: Hyperspectral Imaging and Data Analysis.
    Stamford J; Aciksoz SB; Lawson T
    Methods Mol Biol; 2024; 2790():373-390. PubMed ID: 38649581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperspectral reflectance-based phenotyping for quantitative genetics in crops: Progress and challenges.
    Grzybowski M; Wijewardane NK; Atefi A; Ge Y; Schnable JC
    Plant Commun; 2021 Jul; 2(4):100209. PubMed ID: 34327323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning.
    Nguyen C; Sagan V; Maimaitiyiming M; Maimaitijiang M; Bhadra S; Kwasniewski MT
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral imaging in a non-invasive, automated phenotyping platform.
    Thomas S; Behmann J; Steier A; Kraska T; Muller O; Rascher U; Mahlein AK
    Plant Methods; 2018; 14():45. PubMed ID: 29930695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorting biotic and abiotic stresses on wild rocket by leaf-image hyperspectral data mining with an artificial intelligence model.
    Navarro A; Nicastro N; Costa C; Pentangelo A; Cardarelli M; Ortenzi L; Pallottino F; Cardi T; Pane C
    Plant Methods; 2022 Apr; 18(1):45. PubMed ID: 35366940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
    Busemeyer L; Mentrup D; Möller K; Wunder E; Alheit K; Hahn V; Maurer HP; Reif JC; Würschum T; Müller J; Rahe F; Ruckelshausen A
    Sensors (Basel); 2013 Feb; 13(3):2830-47. PubMed ID: 23447014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximal Hyperspectral Imaging Detects Diurnal and Drought-Induced Changes in Maize Physiology.
    Mertens S; Verbraeken L; Sprenger H; Demuynck K; Maleux K; Cannoot B; De Block J; Maere S; Nelissen H; Bonaventure G; Crafts-Brandner SJ; Vogel JT; Bruce W; Inzé D; Wuyts N
    Front Plant Sci; 2021; 12():640914. PubMed ID: 33692820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.