These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32815548)

  • 1. Genomic predictions for enteric methane production are improved by metabolome and microbiome data in sheep (Ovis aries).
    Ross EM; Hayes BJ; Tucker D; Bond J; Denman SE; Oddy VH
    J Anim Sci; 2020 Oct; 98(10):. PubMed ID: 32815548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome.
    Ghanbari Maman L; Palizban F; Fallah Atanaki F; Elmi Ghiasi N; Ariaeenejad S; Ghaffari MR; Hosseini Salekdeh G; Kavousi K
    Sci Rep; 2020 Mar; 10(1):4995. PubMed ID: 32193482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits.
    Hess MK; Zetouni L; Hess AS; Budel J; Dodds KG; Henry HM; Brauning R; McCulloch AF; Hickey SM; Johnson PL; Elmes S; Wing J; Bryson B; Knowler K; Hyndman D; Baird H; McRae KM; Jonker A; Janssen PH; McEwan JC; Rowe SJ
    Genet Sel Evol; 2023 Jul; 55(1):53. PubMed ID: 37491204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome.
    Shi W; Moon CD; Leahy SC; Kang D; Froula J; Kittelmann S; Fan C; Deutsch S; Gagic D; Seedorf H; Kelly WJ; Atua R; Sang C; Soni P; Li D; Pinares-Patiño CS; McEwan JC; Janssen PH; Chen F; Visel A; Wang Z; Attwood GT; Rubin EM
    Genome Res; 2014 Sep; 24(9):1517-25. PubMed ID: 24907284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.
    Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT
    Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance.
    Xue MY; Sun HZ; Wu XH; Liu JX; Guan LL
    Microbiome; 2020 May; 8(1):64. PubMed ID: 32398126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.
    Roehe R; Dewhurst RJ; Duthie CA; Rooke JA; McKain N; Ross DW; Hyslop JJ; Waterhouse A; Freeman TC; Watson M; Wallace RJ
    PLoS Genet; 2016 Feb; 12(2):e1005846. PubMed ID: 26891056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens.
    Liu T; Luo C; Wang J; Ma J; Shu D; Lund MS; Su G; Qu H
    PLoS One; 2017; 12(3):e0173620. PubMed ID: 28278209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane production.
    Cunha CS; Marcondes MI; Veloso CM; Mantovani HC; Pereira LGR; Tomich TR; Dill-McFarland KA; Suen G
    J Sci Food Agric; 2019 Jan; 99(1):210-218. PubMed ID: 29851082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants.
    Shabat SK; Sasson G; Doron-Faigenboim A; Durman T; Yaacoby S; Berg Miller ME; White BA; Shterzer N; Mizrahi I
    ISME J; 2016 Dec; 10(12):2958-2972. PubMed ID: 27152936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle.
    Ross EM; Moate PJ; Marett LC; Cocks BG; Hayes BJ
    PLoS One; 2013; 8(9):e73056. PubMed ID: 24023808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host.
    Newbold CJ; Ramos-Morales E
    Animal; 2020 Mar; 14(S1):s78-s86. PubMed ID: 32024572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Links between the rumen microbiota, methane emissions and feed efficiency of finishing steers offered dietary lipid and nitrate supplementation.
    Bowen JM; Cormican P; Lister SJ; McCabe MS; Duthie CA; Roehe R; Dewhurst RJ
    PLoS One; 2020; 15(4):e0231759. PubMed ID: 32330150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing.
    Ross EM; Moate PJ; Marett L; Cocks BG; Hayes BJ
    J Dairy Sci; 2013 Sep; 96(9):6030-46. PubMed ID: 23871375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane Emission, Rumen Fermentation, and Microbial Community Response to a Nitrooxy Compound in Low-Quality Forage Fed Hu Sheep.
    Xie F; Zhang L; Jin W; Meng Z; Cheng Y; Wang J; Zhu W
    Curr Microbiol; 2019 Apr; 76(4):435-441. PubMed ID: 30756141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane emissions changed nonlinearly with graded substitution of alfalfa silage with corn silage and corn grain in the diet of sheep and relation with rumen fermentation characteristics in vivo and in vitro.
    Jonker A; Lowe K; Kittelmann S; Janssen PH; Ledgard S; Pacheco D
    J Anim Sci; 2016 Aug; 94(8):3464-3475. PubMed ID: 27695787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dimensional reduction approach to modulate the core ruminal microbiome associated with methane emissions via selective breeding.
    Saborío-Montero A; López-García A; Gutiérrez-Rivas M; Atxaerandio R; Goiri I; García-Rodriguez A; Jiménez-Montero JA; González C; Tamames J; Puente-Sánchez F; Varona L; Serrano M; Ovilo C; González-Recio O
    J Dairy Sci; 2021 Jul; 104(7):8135-8151. PubMed ID: 33896632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: Metabolic interpretation and prediction potential.
    van Gastelen S; Antunes-Fernandes EC; Hettinga KA; Dijkstra J
    J Dairy Sci; 2018 Mar; 101(3):2110-2126. PubMed ID: 29290428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.
    Kamke J; Soni P; Li Y; Ganesh S; Kelly WJ; Leahy SC; Shi W; Froula J; Rubin EM; Attwood GT
    BMC Res Notes; 2017 Aug; 10(1):367. PubMed ID: 28789673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.