BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 32815713)

  • 21. Nox4 B-loop creates an interface between the transmembrane and dehydrogenase domains.
    Jackson HM; Kawahara T; Nisimoto Y; Smith SM; Lambeth JD
    J Biol Chem; 2010 Apr; 285(14):10281-90. PubMed ID: 20139414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases.
    Leto TL; Morand S; Hurt D; Ueyama T
    Antioxid Redox Signal; 2009 Oct; 11(10):2607-19. PubMed ID: 19438290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arginine 391 in subunit I of the cytochrome bd quinol oxidase from Escherichia coli stabilizes the reduced form of the hemes and is essential for quinol oxidase activity.
    Zhang J; Hellwig P; Osborne JP; Gennis RB
    J Biol Chem; 2004 Dec; 279(52):53980-7. PubMed ID: 15475358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P450BM-3; a tale of two domains--or is it three?
    Peterson JA; Sevrioukova I; Truan G; Graham-Lorence SE
    Steroids; 1997 Jan; 62(1):117-23. PubMed ID: 9029725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Architecture of the NADPH oxidase family of enzymes.
    Ogboo BC; Grabovyy UV; Maini A; Scouten S; van der Vliet A; Mattevi A; Heppner DE
    Redox Biol; 2022 Jun; 52():102298. PubMed ID: 35334249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structures of the naturally fused CS and cytochrome b
    Benson DR; Lovell S; Mehzabeen N; Galeva N; Cooper A; Gao P; Battaile KP; Zhu H
    Acta Crystallogr D Struct Biol; 2019 Jul; 75(Pt 7):628-638. PubMed ID: 31282472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene cluster of Rhodothermus marinus high-potential iron-sulfur Protein: oxygen oxidoreductase, a caa(3)-type oxidase belonging to the superfamily of heme-copper oxidases.
    Santana M; Pereira MM; Elias NP; Soares CM; Teixeira M
    J Bacteriol; 2001 Jan; 183(2):687-99. PubMed ID: 11133964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting ROS production through inhibition of NADPH oxidases.
    Reis J; Gorgulla C; Massari M; Marchese S; Valente S; Noce B; Basile L; Törner R; Cox H; Viennet T; Yang MH; Ronan MM; Rees MG; Roth JA; Capasso L; Nebbioso A; Altucci L; Mai A; Arthanari H; Mattevi A
    Nat Chem Biol; 2023 Dec; 19(12):1540-1550. PubMed ID: 37884805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes.
    Kawahara T; Quinn MT; Lambeth JD
    BMC Evol Biol; 2007 Jul; 7():109. PubMed ID: 17612411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases.
    Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ
    Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 36. Electron sweep across four b-hemes of cytochrome bc
    Pintscher S; Pietras R; Sarewicz M; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):459-469. PubMed ID: 29596789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary and structural analyses of the NADPH oxidase family in eukaryotes reveal an initial calcium dependency.
    Massari M; Nicoll CR; Marchese S; Mattevi A; Mascotti ML
    Redox Biol; 2022 Oct; 56():102436. PubMed ID: 35998431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conserved aspartate (Asp-1393) regulates NADPH reduction of neuronal nitric-oxide synthase: implications for catalysis.
    Panda K; Adak S; Konas D; Sharma M; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):18323-33. PubMed ID: 14966111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase.
    Zhang J; Martàsek P; Paschke R; Shea T; Siler Masters BS; Kim JJ
    J Biol Chem; 2001 Oct; 276(40):37506-13. PubMed ID: 11473123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.