These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32815719)

  • 21. Direct
    Zhao Z; Zhang X; Zhou Z; Wang E; Peng Z
    Nano Lett; 2022 Jan; 22(1):501-507. PubMed ID: 34962821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics.
    Lang SY; Xiao RJ; Gu L; Guo YG; Wen R; Wan LJ
    J Am Chem Soc; 2018 Jul; 140(26):8147-8155. PubMed ID: 29883104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.
    Kwabi DG; Tułodziecki M; Pour N; Itkis DM; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2016 Apr; 7(7):1204-12. PubMed ID: 26949979
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Zhang Y; Shen Z; Wen R
    Chem Commun (Camb); 2022 Dec; 58(96):13381-13384. PubMed ID: 36377814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Visualization of Dynamic Mobility of Li
    Zhou C; Shen ZZ; Wen R; Wan LJ
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5395-5401. PubMed ID: 35068138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries.
    Sun B; Huang X; Chen S; Munroe P; Wang G
    Nano Lett; 2014 Jun; 14(6):3145-52. PubMed ID: 24854426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.
    Liao K; Zhang T; Wang Y; Li F; Jian Z; Yu H; Zhou H
    ChemSusChem; 2015 Apr; 8(8):1429-34. PubMed ID: 25809196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vertically Aligned Two-Dimensional Graphene-Metal Hydroxide Hybrid Arrays for Li-O
    Zhu J; Metzger M; Antonietti M; Fellinger TP
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26041-26050. PubMed ID: 27603003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride.
    Zhu Z; Ni Y; Lv Q; Geng J; Xie W; Li F; Chen J
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33879619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constructing an Interlaced Catalytic Surface via Fluorine-Doped Bimetallic Oxides for Oxygen Electrode Processes in Li-O
    Sun Z; Lin X; Wang C; Tan Y; Dou W; Hu A; Cui J; Fan J; Yuan R; Zheng M; Dong Q
    Adv Mater; 2024 Aug; 36(31):e2404319. PubMed ID: 38806164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the Capacity and Stability by CoFe
    Li X; Zhao Y; Ding L; Wang D; Guo Q; Li Z; Luo H; Zhang D; Yu Y
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries.
    Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Lu J; Kang F; Li B; Yang W; Gao J; Indacochea E; Curtiss LA; Amine K
    Nano Lett; 2015 Feb; 15(2):1041-6. PubMed ID: 25615912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li-O
    Qian Z; Li X; Sun B; Du L; Wang Y; Zuo P; Yin G; Zhang J; Sun B; Wang G
    J Phys Chem Lett; 2020 Sep; 11(17):7028-7034. PubMed ID: 32787326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries.
    Liu G; Chen H; Xia L; Wang S; Ding LX; Li D; Xiao K; Dai S; Wang H
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22478-86. PubMed ID: 26418118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries.
    Asadi M; Kumar B; Liu C; Phillips P; Yasaei P; Behranginia A; Zapol P; Klie RF; Curtiss LA; Salehi-Khojin A
    ACS Nano; 2016 Feb; 10(2):2167-75. PubMed ID: 26789516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic-Thick TiO
    Wang G; Zhang S; Qian R; Wen Z
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41398-41406. PubMed ID: 30398850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. True Reaction Sites on Discharge in Li-O
    Tan C; Cao D; Zheng L; Shen Y; Chen L; Chen Y
    J Am Chem Soc; 2022 Jan; 144(2):807-815. PubMed ID: 34991315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries.
    Yin W; Shen Y; Zou F; Hu X; Chi B; Huang Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4947-54. PubMed ID: 25689844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleation and Growth of Lithium Peroxide in the Li-O2 Battery.
    Lau S; Archer LA
    Nano Lett; 2015 Sep; 15(9):5995-6002. PubMed ID: 26237237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.