These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32815719)
41. Photoelectrochemistry of oxygen in rechargeable Li-O Du D; Zhu Z; Chan KY; Li F; Chen J Chem Soc Rev; 2022 Mar; 51(6):1846-1860. PubMed ID: 35195634 [TBL] [Abstract][Full Text] [Related]
42. The effect of water on discharge product growth and chemistry in Li-O2 batteries. Kwabi DG; Batcho TP; Feng S; Giordano L; Thompson CV; Shao-Horn Y Phys Chem Chem Phys; 2016 Sep; 18(36):24944-53. PubMed ID: 27560806 [TBL] [Abstract][Full Text] [Related]
43. Decoupling the Cumulative Contributions of Capacity Fade in Ethereal-Based Li-O Karkera G; Prakash AS ACS Appl Mater Interfaces; 2019 Aug; 11(31):27870-27881. PubMed ID: 31298520 [TBL] [Abstract][Full Text] [Related]
44. Dynamic Modulation of Li Yu H; Liu D; Fu Z; Wang S; Zuo X; Feng X; Zhang Y Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202401272. PubMed ID: 38375744 [TBL] [Abstract][Full Text] [Related]
45. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries. Liu B; Xu W; Yan P; Bhattacharya P; Cao R; Bowden ME; Engelhard MH; Wang CM; Zhang JG ChemSusChem; 2015 Nov; 8(21):3697-703. PubMed ID: 26457378 [TBL] [Abstract][Full Text] [Related]
46. Molecular Sieve Induced Solution Growth of Li Yu W; Wang H; Hu J; Yang W; Qin L; Liu R; Li B; Zhai D; Kang F ACS Appl Mater Interfaces; 2018 Mar; 10(9):7989-7995. PubMed ID: 29461029 [TBL] [Abstract][Full Text] [Related]
47. Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li-O Hong M; Yang C; Wong RA; Nakao A; Choi HC; Byon HR J Am Chem Soc; 2018 May; 140(20):6190-6193. PubMed ID: 29739188 [TBL] [Abstract][Full Text] [Related]
48. Monodispersed Ruthenium Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for an Efficient Lithium-Oxygen Battery. Dai W; Liu Y; Wang M; Lin M; Lian X; Luo Y; Yang J; Chen W ACS Appl Mater Interfaces; 2021 May; 13(17):19915-19926. PubMed ID: 33881825 [TBL] [Abstract][Full Text] [Related]
49. Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li-Air Batteries. Kavalsky L; Mukherjee S; Singh CV ACS Appl Mater Interfaces; 2019 Jan; 11(1):499-510. PubMed ID: 30521304 [TBL] [Abstract][Full Text] [Related]
50. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells. Sharon D; Hirsberg D; Afri M; Chesneau F; Lavi R; Frimer AA; Sun YK; Aurbach D ACS Appl Mater Interfaces; 2015 Aug; 7(30):16590-600. PubMed ID: 26158598 [TBL] [Abstract][Full Text] [Related]
51. In situ small-angle X-ray scattering reveals solution phase discharge of Li-O Prehal C; Samojlov A; Nachtnebel M; Lovicar L; Kriechbaum M; Amenitsch H; Freunberger SA Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33785597 [TBL] [Abstract][Full Text] [Related]
52. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study. Ren X; Wang B; Zhu J; Liu J; Zhang W; Wen Z Phys Chem Chem Phys; 2015 Jun; 17(22):14605-12. PubMed ID: 25970821 [TBL] [Abstract][Full Text] [Related]
53. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. Ganapathy S; Adams BD; Stenou G; Anastasaki MS; Goubitz K; Miao XF; Nazar LF; Wagemaker M J Am Chem Soc; 2014 Nov; 136(46):16335-44. PubMed ID: 25341076 [TBL] [Abstract][Full Text] [Related]
54. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death. Wang J; Zhang Y; Guo L; Wang E; Peng Z Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228 [TBL] [Abstract][Full Text] [Related]
55. Robust oxygen adsorbent mediated oxygen redox reactions for high performance lithium-oxygen battery. Du D; Liu P; Tian G; Xu H; Wang X; Liu S; Fan F; Wang S; Wang C; Zeng C; Shu C J Colloid Interface Sci; 2025 Jan; 678(Pt B):570-577. PubMed ID: 39265329 [TBL] [Abstract][Full Text] [Related]
56. Recent advances in understanding of the mechanism and control of Li Lyu Z; Zhou Y; Dai W; Cui X; Lai M; Wang L; Huo F; Huang W; Hu Z; Chen W Chem Soc Rev; 2017 Oct; 46(19):6046-6072. PubMed ID: 28857099 [TBL] [Abstract][Full Text] [Related]
57. High-Loading Nickel Cobaltate Nanoparticles Anchored on Three-Dimensional N-Doped Graphene as an Efficient Bifunctional Catalyst for Lithium-Oxygen Batteries. Gong H; Xue H; Wang T; Guo H; Fan X; Song L; Xia W; He J ACS Appl Mater Interfaces; 2016 Jul; 8(28):18060-8. PubMed ID: 27353228 [TBL] [Abstract][Full Text] [Related]
58. Research on Effective Oxygen Window Influencing the Capacity of Li-O2 Batteries. Jiang J; Deng H; Li X; Tong S; He P; Zhou H ACS Appl Mater Interfaces; 2016 Apr; 8(16):10375-82. PubMed ID: 27029322 [TBL] [Abstract][Full Text] [Related]
59. Isotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li-O Nishioka K; Morimoto K; Kusumoto T; Harada T; Kamiya K; Mukouyama Y; Nakanishi S J Am Chem Soc; 2021 May; 143(19):7394-7401. PubMed ID: 33945262 [TBL] [Abstract][Full Text] [Related]
60. Computational Insights into Li Yi X; Liu X; Zhang P; Dou R; Wen Z; Zhou W J Phys Chem Lett; 2020 Mar; 11(6):2195-2202. PubMed ID: 31951140 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]