These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32815724)
41. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Lürling M; van Oosterhout F Water Res; 2013 Nov; 47(17):6527-37. PubMed ID: 24041525 [TBL] [Abstract][Full Text] [Related]
42. Comparative study of sediment phosphorus immobilization via the addition of lanthanum-modified and thermal-modified drinking water treatment sludge. Sun F; Chen Y; He L; Tang J; Li Y Environ Sci Pollut Res Int; 2023 Jun; 30(30):76227-76245. PubMed ID: 37270756 [TBL] [Abstract][Full Text] [Related]
43. Dynamics of sediment phosphorus affected by mobile aeration: Pilot-scale simulation study in a hypereutrophic pond. Chen C; Wang Y; Pang X; Long L; Xu M; Xiao Y; Liu Y; Yang G; Deng S; He J; Tang H J Environ Manage; 2021 Nov; 297():113297. PubMed ID: 34280863 [TBL] [Abstract][Full Text] [Related]
44. An investigation of the effects of capping on internal phosphorus release from sediments under rooted macrophytes (Phragmites australis) revegetation. Yu J; Zhong J; Chen Q; Huang W; Hu L; Zhang Y; Fan C Environ Sci Pollut Res Int; 2018 Sep; 25(25):24682-24694. PubMed ID: 29916150 [TBL] [Abstract][Full Text] [Related]
45. Effect of controlling nitrogen and phosphorus release from sediment using a biological aluminum-based P-inactivation agent (BA-PIA). Wang Y; Tang X; Gong C; Huang C; Wu X; Li F; Zhou Z Environ Sci Pollut Res Int; 2023 Aug; 30(36):86425-86436. PubMed ID: 37405603 [TBL] [Abstract][Full Text] [Related]
46. Occurrence and distribution of phosphorus fractions in sediments of Liangzi Lake under typical hydrodynamic conditions. Li H; Tu S; Guan G; Xie Z; Muhammad I Environ Sci Process Impacts; 2015 Aug; 17(8):1433-42. PubMed ID: 26129784 [TBL] [Abstract][Full Text] [Related]
47. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes. Wilson TA; Norton SA; Lake BA; Amirbahman A Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448 [TBL] [Abstract][Full Text] [Related]
48. [Analysis on the forms and release potential of nutrients in sediments from lakes in the West Jiangsu Province]. Liu T; Hu ZX; Yang LY; Xiao L; Xi BD; Xu QG Huan Jing Ke Xue; 2012 Sep; 33(9):3057-63. PubMed ID: 23243859 [TBL] [Abstract][Full Text] [Related]
49. Optimization of aluminum treatment efficiency to control internal phosphorus loading in eutrophic lakes. Agstam-Norlin O; Lannergård EE; Futter MN; Huser BJ Water Res; 2020 Oct; 185():116150. PubMed ID: 33086462 [TBL] [Abstract][Full Text] [Related]
50. Assessing the mode of action of Phoslock® in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK). Meis S; Spears BM; Maberly SC; Perkins RG Water Res; 2013 Sep; 47(13):4460-73. PubMed ID: 23764596 [TBL] [Abstract][Full Text] [Related]
51. [Distribution characteristics and correlations of phosphorus in sediment and interstitial water of Nansi Lake, Shandong Province of East China in summer and winter]. Li B; Wang ZQ; Wang QS; Cuan JB Ying Yong Sheng Tai Xue Bao; 2013 Jun; 24(6):1699-706. PubMed ID: 24066560 [TBL] [Abstract][Full Text] [Related]
52. Immobilization of mobile and bioavailable phosphorus in sediments using lanthanum hydroxide and magnetite/lanthanum hydroxide composite as amendments. Lin J; Zhao Y; Zhang Z; Zhan Y; Zhang Z; Wang Y; Yu Y; Wu X Sci Total Environ; 2019 Oct; 687():232-243. PubMed ID: 31207513 [TBL] [Abstract][Full Text] [Related]
53. The effects of red soil in removing phosphorus from water column and reducing phosphorus release from sediment in Lake Taihu. Dai L; Pan G Water Sci Technol; 2014; 69(5):1052-8. PubMed ID: 24622555 [TBL] [Abstract][Full Text] [Related]
54. Features and influencing factors of nitrogen and phosphorus diffusive fluxes at the sediment-water interface of Erhai Lake. Zhao H; Zhang L; Wang S; Jiao L Environ Sci Pollut Res Int; 2018 Jan; 25(2):1933-1942. PubMed ID: 29103124 [TBL] [Abstract][Full Text] [Related]
55. Contrasting effects of MgAl- and MgFe-based layered double hydroxides on phosphorus mobilization and microbial communities in sediment. Wu X; Li R; Lin J Chemosphere; 2024 Jan; 346():140643. PubMed ID: 37939924 [TBL] [Abstract][Full Text] [Related]
56. Bioavailable phosphorus (P) reduction is less than mobile P immobilization in lake sediment for eutrophication control by inactivating agents. Wang C; He R; Wu Y; Lürling M; Cai H; Jiang HL; Liu X Water Res; 2017 Feb; 109():196-206. PubMed ID: 27888776 [TBL] [Abstract][Full Text] [Related]
57. Variability in phosphorus binding by aluminum in alum treated lakes explained by lake morphology and aluminum dose. Huser BJ Water Res; 2012 Oct; 46(15):4697-704. PubMed ID: 22763294 [TBL] [Abstract][Full Text] [Related]
58. Long-term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany). Lewandowski J; Schauser I; Hupfer M Water Res; 2003 Jul; 37(13):3194-204. PubMed ID: 14509707 [TBL] [Abstract][Full Text] [Related]
59. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. Lake BA; Coolidge KM; Norton SA; Amirbahman A Sci Total Environ; 2007 Feb; 373(2-3):534-41. PubMed ID: 17234258 [TBL] [Abstract][Full Text] [Related]
60. [Enrichment characteristic of phosphorus in surface and core sediments of Chaohu Lake and the pollution quantification]. Liu EF; Du CC; Yang XD; Shen J Huan Jing Ke Xue; 2012 Sep; 33(9):3024-30. PubMed ID: 23243854 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]