These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 3281582)

  • 21. Biocatalytic synthesis of polycatechols from toxic aromatic compounds.
    Ward G; Parales RE; Dosoretz CG
    Environ Sci Technol; 2004 Sep; 38(18):4753-7. PubMed ID: 15487783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes.
    Furukawa K; Miyazaki T
    J Bacteriol; 1986 May; 166(2):392-8. PubMed ID: 3009395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and characterization of chlorobenzene cis-dihydrodiol dehydrogenase from Xanthobacter flavus 14p1.
    Spiess E; Görisch H
    Arch Microbiol; 1996 Mar; 165(3):201-5. PubMed ID: 8599538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Silent genes of the catechol oxidation meta-pathway in naphthalene biodegradation plasmids].
    Boronin AM; Kulakova AN; Tsoĭ TV; Kosheleva IA; Kochetkov VV
    Dokl Akad Nauk SSSR; 1988; 299(1):237-40. PubMed ID: 3378500
    [No Abstract]   [Full Text] [Related]  

  • 25. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad.
    Hartmann J; Reineke W; Knackmuss HJ
    Appl Environ Microbiol; 1979 Mar; 37(3):421-8. PubMed ID: 453823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway.
    Davis JK; He Z; Somerville CC; Spain JC
    Arch Microbiol; 1999 Nov; 172(5):330-9. PubMed ID: 10550475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon.
    Zylstra GJ; McCombie WR; Gibson DT; Finette BA
    Appl Environ Microbiol; 1988 Jun; 54(6):1498-503. PubMed ID: 2843094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformation of chlorinated benzenes and toluenes by Ralstonia sp. strain PS12 tecA (tetrachlorobenzene dioxygenase) and tecB (chlorobenzene dihydrodiol dehydrogenase) gene products.
    Pollmann K; Beil S; Pieper DH
    Appl Environ Microbiol; 2001 Sep; 67(9):4057-63. PubMed ID: 11526005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of 2-chlorobenzoic acid in Pseudomonas stutzeri.
    Kozlovsky SA; Kunc F
    Folia Microbiol (Praha); 1995; 40(5):454-6. PubMed ID: 8846991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cloning and sequence analysis of 1,2,4-trichlorobenzene dioxygenase and dehydrogenase genes].
    Jiang J; Wang H; Gao JS; Song L; Ning DL
    Huan Jing Ke Xue; 2008 Jun; 29(6):1655-9. PubMed ID: 18763518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259.
    Warhurst AM; Clarke KF; Hill RA; Holt RA; Fewson CA
    Appl Environ Microbiol; 1994 Apr; 60(4):1137-45. PubMed ID: 8017910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase.
    Rapp P; Gabriel-Jürgens LHE
    Microbiology (Reading); 2003 Oct; 149(Pt 10):2879-2890. PubMed ID: 14523120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2.
    Zeyer J; Kocher HP; Timmis KN
    Appl Environ Microbiol; 1986 Aug; 52(2):334-9. PubMed ID: 3752997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection of Pseudomonas sp. strain HBP1 Prp for metabolism of 2-propylphenol and elucidation of the degradative pathway.
    Kohler HP; van der Maarel MJ; Kohler-Staub D
    Appl Environ Microbiol; 1993 Mar; 59(3):860-6. PubMed ID: 8481010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816.
    Ensley BD; Gibson DT; Laborde AL
    J Bacteriol; 1982 Mar; 149(3):948-54. PubMed ID: 7037744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of phenol-metabolizing enzymes in Trichosporon cutaneum.
    Gaal A; Neujahr HY
    Arch Microbiol; 1981 Sep; 130(1):54-8. PubMed ID: 7305599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that operons tcb, tfd, and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway.
    Kasberg T; Daubaras DL; Chakrabarty AM; Kinzelt D; Reineke W
    J Bacteriol; 1995 Jul; 177(13):3885-9. PubMed ID: 7601858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorobenzene degradation by Bacillus sp. TAS6CB: a potential candidate to remediate chlorinated hydrocarbon contaminated sites.
    Vyas TK; Murthy SR
    J Basic Microbiol; 2015 Mar; 55(3):382-8. PubMed ID: 23720149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudomonas acidovorans: a bacterium capable of mineralizing 2-chloroaniline.
    Hinteregger C; Loidl M; Streichsbier F
    J Basic Microbiol; 1994; 34(2):77-85. PubMed ID: 8014846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.