BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32815925)

  • 1. Thinking outside the shell: novel sensors designed from plasmon-enhanced fluorescent concentric nanoparticles.
    Fontaine N; Picard-Lafond A; Asselin J; Boudreau D
    Analyst; 2020 Sep; 145(18):5965-5980. PubMed ID: 32815925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllably prepared molecularly imprinted core-shell plasmonic nanostructure for plasmon-enhanced fluorescence assay.
    He H; Muhammad P; Guo Z; Peng Q; Lu H; Liu Z
    Biosens Bioelectron; 2019 Dec; 146():111733. PubMed ID: 31600624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor.
    Hong D; Jo EJ; Bang D; Jung C; Lee YE; Noh YS; Shin MG; Kim MG
    ACS Nano; 2023 Sep; 17(17):16607-16619. PubMed ID: 37595106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments.
    Jeong Y; Kook YM; Lee K; Koh WG
    Biosens Bioelectron; 2018 Jul; 111():102-116. PubMed ID: 29660581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in three dimensional metal enhanced fluorescence based biosensors using metal nanomaterial and nano-patterned surfaces.
    Goodrum R; Li H
    Biotechnol J; 2024 Jan; 19(1):e2300519. PubMed ID: 37997672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-controlled fluorescence and single DNA strand sequenching.
    Akbay N; Ray K; Chowdhury MH; Lakowicz JR
    Proc SPIE Int Soc Opt Eng; 2012 Sep; 8234():82340M. PubMed ID: 24027614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs.
    Aslan K; Wu M; Lakowicz JR; Geddes CD
    J Fluoresc; 2007 Mar; 17(2):127-31. PubMed ID: 17279332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Enhanced Hg
    Picard-Lafond A; Larivière D; Boudreau D
    ACS Omega; 2022 Jul; 7(26):22944-22955. PubMed ID: 35811854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte Layer-by-Layer Assembly To Control the Distance between Fluorophores and Plasmonic Nanostructures.
    Ray K; Badugu R; Lakowicz JR
    Chem Mater; 2007 Nov; 19(24):5902-5909. PubMed ID: 19714227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-enhanced fluorescence of nano-core-shell structure used for sensitive detection of prion protein with a dual-aptamer strategy.
    Hu PP; Zheng LL; Zhan L; Li JY; Zhen SJ; Liu H; Luo LF; Xiao GF; Huang CZ
    Anal Chim Acta; 2013 Jul; 787():239-45. PubMed ID: 23830445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO
    Yan Y; Meng L; Zhang W; Zheng Y; Wang S; Ren B; Yang Z; Yan X
    ACS Sens; 2017 Sep; 2(9):1369-1376. PubMed ID: 28836759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems.
    Kochuveedu ST; Kim DH
    Nanoscale; 2014 May; 6(10):4966-84. PubMed ID: 24710702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distance-Dependent Metal-Enhanced Intrinsic Fluorescence of Proteins Using Polyelectrolyte Layer-by-Layer Assembly and Aluminum Nanoparticles.
    Akbay N; Lakowicz JR; Ray K
    J Phys Chem C Nanomater Interfaces; 2012 May; 116(19):10766-10773. PubMed ID: 22707997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver-Gold Nanocomposite Substrates for Metal-Enhanced Fluorescence: Ensemble and Single-Molecule Spectroscopic Studies.
    Choudhury SD; Badugu R; Ray K; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2012 Mar; 116(8):5042-5048. PubMed ID: 22707999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic fluorescent nanocomposites of cyanines self-assembled upon gold nanoparticle scaffolds.
    Achyuthan KE; Achyuthan AM; Brozik SM; Dirk SM; Lujan TR; Romero JM; Harper JC
    Anal Sci; 2012; 28(5):433-8. PubMed ID: 22687920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences.
    Deng W; Goldys EM
    Langmuir; 2012 Jul; 28(27):10152-63. PubMed ID: 22568517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-enhanced fluorescence: an emerging tool in biotechnology.
    Aslan K; Gryczynski I; Malicka J; Matveeva E; Lakowicz JR; Geddes CD
    Curr Opin Biotechnol; 2005 Feb; 16(1):55-62. PubMed ID: 15722016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.