These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32815925)

  • 21. Silica-Coated Plasmonic Metal Nanoparticles in Action.
    Hanske C; Sanz-Ortiz MN; Liz-Marzán LM
    Adv Mater; 2018 Jul; 30(27):e1707003. PubMed ID: 29736945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-Molecule Spectroscopy of Semiconductor Nanocrystals on Plasmonic Nanostructures.
    Ray K; Badugu R; Lakowicz JR
    Proc SPIE Int Soc Opt Eng; 2008 Jan; 6869():68690A1-68690A10. PubMed ID: 19763187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanowire-Intensified Metal-Enhanced Fluorescence in Hybrid Polymer-Plasmonic Electrospun Filaments.
    Camposeo A; Jurga R; Moffa M; Portone A; Cardarelli F; Della Sala F; Ciracì C; Pisignano D
    Small; 2018 May; 14(19):e1800187. PubMed ID: 29655227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing.
    Badshah MA; Koh NY; Zia AW; Abbas N; Zahra Z; Saleem MW
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window.
    Fothergill SM; Joyce C; Xie F
    Nanoscale; 2018 Dec; 10(45):20914-20929. PubMed ID: 30324956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence enhancement using silver-gold nanocomposite substrates.
    Choudhury SD; Badugu R; Ray K; Vanam PS; Lakowicz JR
    Proc SPIE Int Soc Opt Eng; 2012 Feb; 8234():82340B. PubMed ID: 24027613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wide-Range Tunable Fluorescence Lifetime and Ultrabright Luminescence of Eu-Grafted Plasmonic Core-Shell Nanoparticles for Multiplexing.
    Zhang J; Song F; He Z; Liu Y; Chen Z; Lin S; Huang L; Huang W
    Small; 2016 Jan; 12(3):397-404. PubMed ID: 26618616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dye doped concentric shell nanoparticles for enhanced photophysical performance of downconverting light emitting diodes.
    Ning X; Chittigori J; Li Y; Horner G; Zhou Z; Ullal CK; Schadler L
    J Colloid Interface Sci; 2019 Nov; 556():753-760. PubMed ID: 31526914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing.
    Gao S; Koshizaki N
    Anal Bioanal Chem; 2011 Jan; 399(1):91-101. PubMed ID: 20960154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distance-dependent intrinsic fluorescence of proteins on aluminum nanostructures.
    Akbay N; Lakowicz JR; Ray K
    Proc SPIE Int Soc Opt Eng; 2012 Feb; 8234():823417. PubMed ID: 24027612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.
    Zhou Z; Huang H; Chen Y; Liu F; Huang CZ; Li N
    Biosens Bioelectron; 2014 Feb; 52():367-73. PubMed ID: 24080216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A ratiometric nanoarchitecture for the simultaneous detection of pH and halide ions using UV plasmon-enhanced fluorescence.
    Asselin J; Lambert MP; Fontaine N; Boudreau D
    Chem Commun (Camb); 2017 Jan; 53(4):755-758. PubMed ID: 27999833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications.
    Gentile A; Ruffino F; Grimaldi MG
    Nanomaterials (Basel); 2016 Jun; 6(6):. PubMed ID: 28335236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications.
    Zeng S; Baillargeat D; Ho HP; Yong KT
    Chem Soc Rev; 2014 May; 43(10):3426-52. PubMed ID: 24549396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.
    Zhou N; Polavarapu L; Wang Q; Xu QH
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4844-50. PubMed ID: 25674821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.