These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
759 related articles for article (PubMed ID: 32816067)
1. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051 [TBL] [Abstract][Full Text] [Related]
5. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Zhang Y; Yu W; Ba Z; Cui S; Wei J; Li H Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139 [TBL] [Abstract][Full Text] [Related]
6. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
7. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198 [TBL] [Abstract][Full Text] [Related]
8. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236 [TBL] [Abstract][Full Text] [Related]
9. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
10. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
12. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair. Wu J; Miao G; Zheng Z; Li Z; Ren W; Wu C; Li Y; Huang Z; Yang L; Guo L J Biomater Appl; 2019 Jan; 33(6):755-765. PubMed ID: 30426864 [TBL] [Abstract][Full Text] [Related]
13. Cellulose acetate-gelatin-coated boron-bioactive glass biocomposite scaffolds for bone tissue engineering. Moonesi Rad R; Alshemary AZ; Evis Z; Keskin D; Tezcaner A Biomed Mater; 2020 Sep; 15(6):065009. PubMed ID: 32340000 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. Thomas A; Bera J J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Fu S; Du X; Zhu M; Tian Z; Wei D; Zhu Y Biomed Mater; 2019 Oct; 14(6):065011. PubMed ID: 31484173 [TBL] [Abstract][Full Text] [Related]
16. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering. Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650 [TBL] [Abstract][Full Text] [Related]
17. Employing novel biocompatible composite scaffolds with bioglass 58S and poly L-lactic acid for effective bone defect treatment. Motalebzadeh E; Hemati S; Mayvani MA; Ghollasi M Mol Biol Rep; 2024 Jul; 51(1):838. PubMed ID: 39042226 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
19. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. Zhu DY; Lu B; Yin JH; Ke QF; Xu H; Zhang CQ; Guo YP; Gao YS Int J Nanomedicine; 2019; 14():1085-1100. PubMed ID: 30804672 [TBL] [Abstract][Full Text] [Related]
20. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]