These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32816075)
1. Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration. Webster TA; Hadley BC; Dickson M; Busa JK; Jaques C; Mason C Bioprocess Biosyst Eng; 2021 Jan; 44(1):127-140. PubMed ID: 32816075 [TBL] [Abstract][Full Text] [Related]
2. Automated Raman feed-back control of multiple supplemental feeds to enable an intensified high inoculation density fed-batch platform process. Webster TA; Hadley BC; Dickson M; Hodgkins J; Olin M; Wolnick N; Armstrong J; Mason C; Downey B Bioprocess Biosyst Eng; 2023 Oct; 46(10):1457-1470. PubMed ID: 37633861 [TBL] [Abstract][Full Text] [Related]
3. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture. Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969 [TBL] [Abstract][Full Text] [Related]
4. An automated high inoculation density fed-batch bioreactor, enabled through N-1 perfusion, accommodates clonal diversity and doubles titers. Olin M; Wolnick N; Crittenden H; Quach A; Russell B; Hendrick S; Armstrong J; Webster T; Hadley B; Dickson M; Hodgkins J; Busa K; Connolly R; Downey B Biotechnol Prog; 2024; 40(2):e3410. PubMed ID: 38013663 [TBL] [Abstract][Full Text] [Related]
5. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Lu F; Toh PC; Burnett I; Li F; Hudson T; Amanullah A; Li J Biotechnol Bioeng; 2013 Jan; 110(1):191-205. PubMed ID: 22767053 [TBL] [Abstract][Full Text] [Related]
6. Robust platform for inline Raman monitoring and control of perfusion cell culture. Wan B; Patel M; Zhou G; Olma M; Bieri M; Mueller M; Appiah-Amponsah E; Patel B; Jayapal K Biotechnol Bioeng; 2024 May; 121(5):1688-1701. PubMed ID: 38393313 [TBL] [Abstract][Full Text] [Related]
7. Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation. Domján J; Fricska A; Madarász L; Gyürkés M; Köte Á; Farkas A; Vass P; Fehér C; Horváth B; Könczöl K; Pataki H; Nagy ZK; Marosi GJ; Hirsch E Biotechnol Prog; 2020 Nov; 36(6):e3052. PubMed ID: 32692473 [TBL] [Abstract][Full Text] [Related]
8. Tuning monoclonal antibody galactosylation using Raman spectroscopy-controlled lactic acid feeding. W Eyster T; Talwar S; Fernandez J; Foster S; Hayes J; Allen R; Reidinger S; Wan B; Ji X; Aon J; Patel P; Ritz DB Biotechnol Prog; 2021 Jan; 37(1):e3085. PubMed ID: 32975043 [TBL] [Abstract][Full Text] [Related]
9. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Zhang A; Tsang VL; Moore B; Shen V; Huang YM; Kshirsagar R; Ryll T Biotechnol Bioeng; 2015 Dec; 112(12):2495-504. PubMed ID: 26108810 [TBL] [Abstract][Full Text] [Related]
10. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
11. Feed development for fed-batch CHO production process by semisteady state analysis. Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108 [TBL] [Abstract][Full Text] [Related]
12. Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy. Domján J; Pantea E; Gyürkés M; Madarász L; Kozák D; Farkas A; Horváth B; Benkő Z; Nagy ZK; Marosi G; Hirsch E Biotechnol J; 2022 May; 17(5):e2100395. PubMed ID: 35084785 [TBL] [Abstract][Full Text] [Related]
13. On-Line Control of Glucose Concentration in High-Yielding Mammalian Cell Cultures Enabled Through Oxygen Transfer Rate Measurements. Goldrick S; Lee K; Spencer C; Holmes W; Kuiper M; Turner R; Farid SS Biotechnol J; 2018 Apr; 13(4):e1700607. PubMed ID: 29247603 [TBL] [Abstract][Full Text] [Related]
14. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Li MY; Ebel B; Paris C; Chauchard F; Guedon E; Marc A Biotechnol Prog; 2018 Mar; 34(2):486-493. PubMed ID: 29314747 [TBL] [Abstract][Full Text] [Related]
15. Perfusion Cell Culture Decreases Process and Product Heterogeneity in a Head-to-Head Comparison With Fed-Batch. Walther J; Lu J; Hollenbach M; Yu M; Hwang C; McLarty J; Brower K Biotechnol J; 2019 Feb; 14(2):e1700733. PubMed ID: 29851298 [TBL] [Abstract][Full Text] [Related]
16. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality. Karengera E; Robotham A; Kelly J; Durocher Y; De Crescenzo G; Henry O Biotechnol Prog; 2018 Mar; 34(2):494-504. PubMed ID: 29314777 [TBL] [Abstract][Full Text] [Related]
17. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
18. Optimization of fed-batch parameters and harvest time of CHO cell cultures for a glycosylated product with multiple mechanisms of inactivation. Senger RS; Karim MN Biotechnol Bioeng; 2007 Oct; 98(2):378-90. PubMed ID: 17385745 [TBL] [Abstract][Full Text] [Related]
19. Differential gene expression of a feed-spiked super-producing CHO cell line. Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452 [TBL] [Abstract][Full Text] [Related]