These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32816075)
21. Development of an in-line Raman analytical method for commercial-scale CHO cell culture process monitoring: Influence of measurement channels and batch number on model performance. Yan X; Dong X; Wan Y; Gao D; Chen Z; Zhang Y; Zheng Z; Chen K; Jiao J; Sun Y; He Z; Nie L; Fan X; Wang H; Qu H Biotechnol J; 2024 Jan; 19(1):e2300395. PubMed ID: 38180295 [TBL] [Abstract][Full Text] [Related]
22. A robust feeding strategy to maintain set-point glucose in mammalian fed-batch cultures when input parameters have a large error. Konakovsky V; Clemens C; Müller MM; Bechmann J; Herwig C Biotechnol Prog; 2017 Mar; 33(2):317-336. PubMed ID: 28127895 [TBL] [Abstract][Full Text] [Related]
23. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938 [TBL] [Abstract][Full Text] [Related]
24. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Chee Furng Wong D; Tin Kam Wong K; Tang Goh L; Kiat Heng C; Gek Sim Yap M Biotechnol Bioeng; 2005 Jan; 89(2):164-77. PubMed ID: 15593097 [TBL] [Abstract][Full Text] [Related]
25. Development of generic raman models for a GS-KO Webster TA; Hadley BC; Hilliard W; Jaques C; Mason C Biotechnol Prog; 2018 May; 34(3):730-737. PubMed ID: 29603893 [TBL] [Abstract][Full Text] [Related]
26. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness. Konakovsky V; Clemens C; Müller MM; Bechmann J; Berger M; Schlatter S; Herwig C Bioengineering (Basel); 2016 Jan; 3(1):. PubMed ID: 28952567 [TBL] [Abstract][Full Text] [Related]
27. Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Lin H; Leighty RW; Godfrey S; Wang SB Biotechnol Prog; 2017 Jul; 33(4):891-901. PubMed ID: 28371394 [TBL] [Abstract][Full Text] [Related]
28. Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation. Hirsch E; Pataki H; Domján J; Farkas A; Vass P; Fehér C; Barta Z; Nagy ZK; Marosi GJ; Csontos I Biotechnol Prog; 2019 Sep; 35(5):e2848. PubMed ID: 31115976 [TBL] [Abstract][Full Text] [Related]
29. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors. Rowland-Jones RC; van den Berg F; Racher AJ; Martin EB; Jaques C Biotechnol Prog; 2017 Mar; 33(2):337-346. PubMed ID: 28271638 [TBL] [Abstract][Full Text] [Related]
30. Process intensification to produce a difficult-to-express therapeutic enzyme by high cell density perfusion or enhanced fed-batch. Särnlund S; Jiang Y; Chotteau V Biotechnol Bioeng; 2021 Sep; 118(9):3533-3544. PubMed ID: 33914903 [TBL] [Abstract][Full Text] [Related]
31. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Xu S; Gavin J; Jiang R; Chen H Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910 [TBL] [Abstract][Full Text] [Related]
32. Benchmarking of commercially available CHO cell culture media for antibody production. Reinhart D; Damjanovic L; Kaisermayer C; Kunert R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330 [TBL] [Abstract][Full Text] [Related]
33. Towards the development of automated fed-batch cell culture processes at microscale. Wiegmann V; Giaka M; Martinez CB; Baganz F Biotechniques; 2019 Nov; 67(5):238-241. PubMed ID: 31529987 [No Abstract] [Full Text] [Related]
34. Process intensification for the production of rituximab by an inducible CHO cell line. Mellahi K; Brochu D; Gilbert M; Perrier M; Ansorge S; Durocher Y; Henry O Bioprocess Biosyst Eng; 2019 May; 42(5):711-725. PubMed ID: 30673843 [TBL] [Abstract][Full Text] [Related]
35. A framework for the systematic design of fed-batch strategies in mammalian cell culture. Kyriakopoulos S; Kontoravdi C Biotechnol Bioeng; 2014 Dec; 111(12):2466-76. PubMed ID: 24975682 [TBL] [Abstract][Full Text] [Related]
36. A protocol to transfer a fed-batch platform process into semi-perfusion mode: The benefit of automated small-scale bioreactors compared to shake flasks as scale-down model. Janoschek S; Schulze M; Zijlstra G; Greller G; Matuszczyk J Biotechnol Prog; 2019 Mar; 35(2):e2757. PubMed ID: 30479066 [TBL] [Abstract][Full Text] [Related]
37. Repurposing fed-batch media and feeds for highly productive CHO perfusion processes. Kuiper M; Spencer C; Fäldt E; Vuillemez A; Holmes W; Samuelsson T; Gruber D; Castan A Biotechnol Prog; 2019 Jul; 35(4):e2821. PubMed ID: 30985083 [TBL] [Abstract][Full Text] [Related]
38. Development of automated metabolite control using mid-infrared probe for bioprocesses and vaccine manufacturing. Reid J; Haer M; Chen A; Adams C; Lin YC; Cronin J; Yu Z; Kirkitadze M; Yuan T J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38862198 [TBL] [Abstract][Full Text] [Related]
39. Autophagy and apoptosis of recombinant Chinese hamster ovary cells during fed-batch culture: effect of nutrient supplementation. Han YK; Ha TK; Lee SJ; Lee JS; Lee GM Biotechnol Bioeng; 2011 Sep; 108(9):2182-92. PubMed ID: 21495016 [TBL] [Abstract][Full Text] [Related]
40. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Hiller GW; Ovalle AM; Gagnon MP; Curran ML; Wang W Biotechnol Bioeng; 2017 Jul; 114(7):1438-1447. PubMed ID: 28128436 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]