These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 32816234)
1. Optimizing the Spinal Interbody Implant: Current Advances in Material Modification and Surface Treatment Technologies. Park PJ; Lehman RA Curr Rev Musculoskelet Med; 2020 Dec; 13(6):688-695. PubMed ID: 32816234 [TBL] [Abstract][Full Text] [Related]
2. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Rao PJ; Pelletier MH; Walsh WR; Mobbs RJ Orthop Surg; 2014 May; 6(2):81-9. PubMed ID: 24890288 [TBL] [Abstract][Full Text] [Related]
3. Impact of surface roughness and bulk porosity on spinal interbody implants. Levy HA; Karamian BA; Yalla GR; Canseco JA; Vaccaro AR; Kepler CK J Biomed Mater Res B Appl Biomater; 2023 Feb; 111(2):478-489. PubMed ID: 36075112 [TBL] [Abstract][Full Text] [Related]
4. PEEK Versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26-Week Biomechanics. Pelletier MH; Cordaro N; Punjabi VM; Waites M; Lau A; Walsh WR Clin Spine Surg; 2016 May; 29(4):E208-14. PubMed ID: 22801456 [TBL] [Abstract][Full Text] [Related]
5. Evolution of polyetheretherketone (PEEK) and titanium interbody devices for spinal procedures: a comprehensive review of the literature. Muthiah N; Yolcu YU; Alan N; Agarwal N; Hamilton DK; Ozpinar A Eur Spine J; 2022 Oct; 31(10):2547-2556. PubMed ID: 35689111 [TBL] [Abstract][Full Text] [Related]
6. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Van Horn MR; Beard R; Wang W; Cunningham BW; Mullinix KP; Allall M; Bucklen BS Spine J; 2021 Dec; 21(12):2097-2103. PubMed ID: 34029756 [TBL] [Abstract][Full Text] [Related]
7. Evolution of Bioactive Implants in Lateral Interbody Fusion. Chan JL; Bae HW; Harrison Farber S; Uribe JS; Eastlack RK; Walker CT Int J Spine Surg; 2022 Mar; 16(S1):S61-S68. PubMed ID: 35387890 [TBL] [Abstract][Full Text] [Related]
8. Can Polyether Ether Ketone Dethrone Titanium as the Choice Implant Material for Metastatic Spine Tumor Surgery? Kumar N; Ramakrishnan SA; Lopez KG; Madhu S; Ramos MRD; Fuh JYH; Hallinan J; Nolan CP; Benneker LM; Vellayappan BA World Neurosurg; 2021 Apr; 148():94-109. PubMed ID: 33508491 [TBL] [Abstract][Full Text] [Related]
10. Advantages and Disadvantages of the Use of Various Types of Interbody Implants in Cervical Spine Surgery. Critical Review of the Literature. Godlewski B; Dominiak M Ortop Traumatol Rehabil; 2020 Aug; 22(4):213-220. PubMed ID: 32986004 [TBL] [Abstract][Full Text] [Related]
11. In vivo experimental study of anterior cervical fusion using bioactive polyetheretherketone in a canine model. Shimizu T; Fujibayashi S; Yamaguchi S; Otsuki B; Okuzu Y; Matsushita T; Kokubo T; Matsuda S PLoS One; 2017; 12(9):e0184495. PubMed ID: 28886118 [TBL] [Abstract][Full Text] [Related]
12. Porous titanium-coated polyetheretherketone implants exhibit an improved bone-implant interface: an in vitro and in vivo biochemical, biomechanical, and histological study. Cheng BC; Koduri S; Wing CA; Woolery N; Cook DJ; Spiro RC Med Devices (Auckl); 2018; 11():391-402. PubMed ID: 30464653 [TBL] [Abstract][Full Text] [Related]
13. Optimizing surface characteristics for cell adhesion and proliferation on titanium plasma spray coatings on polyetheretherketone. Yoon BJ; Xavier F; Walker BR; Grinberg S; Cammisa FP; Abjornson C Spine J; 2016 Oct; 16(10):1238-1243. PubMed ID: 27241209 [TBL] [Abstract][Full Text] [Related]
14. Vacuum plasma sprayed porous titanium coating on polyetheretherketone for ACDF improves the osteogenic ability: An in vitro and in vivo study. Liu C; Zhang Y; Xiao L; Ge X; Öner FC; Xu H Biomed Microdevices; 2021 Apr; 23(2):21. PubMed ID: 33821351 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses. McGilvray KC; Waldorff EI; Easley J; Seim HB; Zhang N; Linovitz RJ; Ryaby JT; Puttlitz CM Spine J; 2017 Dec; 17(12):1907-1916. PubMed ID: 28751242 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of three biomaterials in an ovine bone defect model. Cheng BC; Jaffee S; Averick S; Swink I; Horvath S; Zhukauskas R Spine J; 2020 Mar; 20(3):457-464. PubMed ID: 31626979 [TBL] [Abstract][Full Text] [Related]
17. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. McGilvray KC; Easley J; Seim HB; Regan D; Berven SH; Hsu WK; Mroz TE; Puttlitz CM Spine J; 2018 Jul; 18(7):1250-1260. PubMed ID: 29496624 [TBL] [Abstract][Full Text] [Related]
18. Sustainable Surface Modification of Polyetheretherketone (PEEK) Implants by Hydroxyapatite/Silica Coating-An In Vivo Animal Study. Frankenberger T; Graw CL; Engel N; Gerber T; Frerich B; Dau M Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443112 [TBL] [Abstract][Full Text] [Related]
19. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? Kienle A; Graf N; Wilke HJ Spine J; 2016 Feb; 16(2):235-42. PubMed ID: 26409208 [TBL] [Abstract][Full Text] [Related]
20. In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application. Tsou HK; Chi MH; Hung YW; Chung CJ; He JL Biomed Res Int; 2015; 2015():328943. PubMed ID: 26504800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]