BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 32816448)

  • 1. Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black.
    Qu M; Qin Y; Sun Y; Xu H; Schubert DW; Zheng K; Xu W; Nilsson F
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42140-42152. PubMed ID: 32816448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Physical and Mechanical Properties of Nitrile-Butadiene Rubber Composites with
    Kapitonov EA; Petrova NN; Mukhin VV; Nikiforov LA; Gogolev VD; Shim EL; Okhlopkova AA; Cho JH
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.
    Chen Y; Zhang Y; Xu C; Cao X
    Carbohydr Polym; 2015 Oct; 130():149-54. PubMed ID: 26076611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol for fabricating electroless nickel immersion gold strain sensors on nitrile butadiene rubber gloves for wearable electronics.
    Mechael SS; Wu Y; Chen Y; Carmichael TB
    STAR Protoc; 2021 Dec; 2(4):100832. PubMed ID: 34568846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable and Highly Sensitive Braided Composite Yarn@Polydopamine@Polypyrrole for Wearable Applications.
    Pan J; Yang M; Luo L; Xu A; Tang B; Cheng D; Cai G; Wang X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7338-7348. PubMed ID: 30673211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and mechanical properties of rubber composites reinforced with carbon nanohorns.
    Isshiki T; Hashimoto M; Morii M; Ota Y; Kaneda K; Takahashi H; Yudasaka M; Iijima S; Okino F
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3810-4. PubMed ID: 20355372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrinkle-Enabled Highly Stretchable Strain Sensors for Wide-Range Health Monitoring with a Big Data Cloud Platform.
    Huang J; Zhou J; Luo Y; Yan G; Liu Y; Shen Y; Xu Y; Li H; Yan L; Zhang G; Fu Y; Duan H
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43009-43017. PubMed ID: 32856459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ready-to-wear strain sensing gloves for human motion sensing.
    Mechael SS; Wu Y; Chen Y; Carmichael TB
    iScience; 2021 Jun; 24(6):102525. PubMed ID: 34151221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydopamine/polystyrene nanocomposite double-layer strain sensor hydrogel with mechanical, self-healing, adhesive and conductive properties.
    Han L; Liu M; Yan B; Li Y; Lan J; Shi L; Ran R
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110567. PubMed ID: 32229002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems.
    Han L; Cui S; Yu HY; Song M; Zhang H; Grishkewich N; Huang C; Kim D; Tam KMC
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44642-44651. PubMed ID: 31684724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring Dielectric and Actuated Properties of Elastomer Composites by Bioinspired Poly(dopamine) Encapsulated Graphene Oxide.
    Ning N; Ma Q; Liu S; Tian M; Zhang L; Nishi T
    ACS Appl Mater Interfaces; 2015 May; 7(20):10755-62. PubMed ID: 25938262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of CB-PDMS Flexible Sensing for Monitoring of Bridge Cracks.
    Huang Y; Chen Y; Deng F; Wang X
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocellulose-triggered structural and property changes of acrylonitrile-butadiene rubber films.
    Ogunsona E; Hojabr S; Berry R; Mekonnen TH
    Int J Biol Macromol; 2020 Dec; 164():2038-2050. PubMed ID: 32739512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring.
    Davoodi E; Montazerian H; Haghniaz R; Rashidi A; Ahadian S; Sheikhi A; Chen J; Khademhosseini A; Milani AS; Hoorfar M; Toyserkani E
    ACS Nano; 2020 Feb; 14(2):1520-1532. PubMed ID: 31904931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct visualization of carbon black aggregates in nitrile butadiene rubber by THz near-field microscope.
    Moon Y; Lee H; Jung J; Han H
    Sci Rep; 2023 May; 13(1):7846. PubMed ID: 37188716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A shapeable, ultra-stretchable rubber strain sensor based on carbon nanotubes and Ag flakes via melt-mixing process.
    Zhang Q; Pan S; Ji C; Song J; Zhang R; Zhang W; Sang S
    J Mater Chem B; 2021 Apr; 9(16):3502-3508. PubMed ID: 33909735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filler Effects on H
    Jung JK; Lee CH; Son MS; Lee JH; Baek UB; Chung KS; Choi MC; Bae JW
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Biocompability/Osteogenesis and In Vivo Bone Formation Evalution of Peptide-Decorated Apatite Nanocomposites Assisted via Polydopamine.
    Deng Y; Sun Y; Bai Y; Gao X; Zhang H; Xu A; Huang E; Deng F; Wei S
    J Biomed Nanotechnol; 2016 Apr; 12(4):602-18. PubMed ID: 27301188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions.
    Zhang H; Ren P; Yang F; Chen J; Wang C; Zhou Y; Fu J
    J Mater Chem B; 2020 Dec; 8(46):10549-10558. PubMed ID: 33125024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Superhydrophobic Strain Sensor with a Multilayer Structure for Human Motion Monitoring.
    Gao WC; Wu W; Chen CZ; Zhao H; Liu Y; Li Q; Huang CX; Hu GH; Wang SF; Shi D; Zhang QC
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1874-1884. PubMed ID: 34937333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.