BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32816470)

  • 1. Conditional Recruitment to a DNA-Bound CRISPR-Cas Complex Using a Colocalization-Dependent Protein Switch.
    Kirkpatrick RL; Lewis K; Langan RA; Lajoie MJ; Boyken SE; Eakman M; Baker D; Zalatan JG
    ACS Synth Biol; 2020 Sep; 9(9):2316-2323. PubMed ID: 32816470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-Selective Regulation of CRISPR/Cas.
    Hochrein LM; Li H; Pierce NA
    ACS Synth Biol; 2021 May; 10(5):964-971. PubMed ID: 33930275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas-Mediated Chemical Control of Transcriptional Dynamics in Yeast.
    Cunningham-Bryant D; Sun J; Fernandez B; Zalatan JG
    Chembiochem; 2019 Jun; 20(12):1519-1523. PubMed ID: 30710419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shooting the messenger: RNA-targetting CRISPR-Cas systems.
    Zhu Y; Klompe SE; Vlot M; van der Oost J; Staals RHJ
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29748239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9.
    Mans R; Wijsman M; Daran-Lapujade P; Daran JM
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29860374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair.
    Savic N; Ringnalda FC; Lindsay H; Berk C; Bargsten K; Li Y; Neri D; Robinson MD; Ciaudo C; Hall J; Jinek M; Schwank G
    Elife; 2018 May; 7():. PubMed ID: 29809142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
    Wilbie D; Walther J; Mastrobattista E
    Acc Chem Res; 2019 Jun; 52(6):1555-1564. PubMed ID: 31099553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.
    Jiang F; Liu JJ; Osuna BA; Xu M; Berry JD; Rauch BJ; Nogales E; Bondy-Denomy J; Doudna JA
    Mol Cell; 2019 Feb; 73(3):601-610.e5. PubMed ID: 30595438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-Type-Specific CRISPR Activation with MicroRNA-Responsive AcrllA4 Switch.
    Hirosawa M; Fujita Y; Saito H
    ACS Synth Biol; 2019 Jul; 8(7):1575-1582. PubMed ID: 31268303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
    Zheng W
    Proteins; 2017 Feb; 85(2):342-353. PubMed ID: 27936513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.
    Liu L; Yin M; Wang M; Wang Y
    Mol Cell; 2019 Feb; 73(3):611-620.e3. PubMed ID: 30606466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae.
    Sasano Y; Nagasawa K; Kaboli S; Sugiyama M; Harashima S
    Sci Rep; 2016 Aug; 6():30278. PubMed ID: 27530680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dead Cas Systems: Types, Principles, and Applications.
    Brezgin S; Kostyusheva A; Kostyushev D; Chulanov V
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31801211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold RNA engineering in type V CRISPR-Cas systems: a potent way to enhance gene expression in the yeast Saccharomyces cerevisiae.
    Yu L; Marchisio MA
    Nucleic Acids Res; 2024 Feb; 52(3):1483-1497. PubMed ID: 38142459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CReasPy-Cloning: A Method for Simultaneous Cloning and Engineering of Megabase-Sized Genomes in Yeast Using the CRISPR-Cas9 System.
    Ruiz E; Talenton V; Dubrana MP; Guesdon G; Lluch-Senar M; Salin F; Sirand-Pugnet P; Arfi Y; Lartigue C
    ACS Synth Biol; 2019 Nov; 8(11):2547-2557. PubMed ID: 31663334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.