These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32816673)

  • 1. Electromagnetic Actuation System for Focused Capturing of Magnetic Particles With a Half of Static Saddle Potential Energy Configuration.
    Le TA; Bui MP; Yoon J
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):869-880. PubMed ID: 32816673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved magnetic drug targeting with maximized magnetic forces and limited particle spreading.
    Van Durme R; Crevecoeur G; Dupré L; Coene A
    Med Phys; 2023 Mar; 50(3):1715-1727. PubMed ID: 36542430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.
    Le TA; Zhang X; Hoshiar AK; Yoon J
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic drive of microrobot geometrically constrained in blood vessel.
    Nakamura S; Harada K; Sugita N; Mitsuishi M; Kaneko M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6664-7. PubMed ID: 22255867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Approach to Accumulate Superparamagnetic Particles in Aqueous Environment Using Time-Varying Magnetic Field.
    Liu YL; Chen JJ; Ahmad F; Zhang TD; Guo WH; Ye YJ; Shang P; Yin DC
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1558-1564. PubMed ID: 31502959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro study of magnetic particle targeting in small blood vessels.
    Udrea LE; Strachan NJ; Bădescu V; Rotariu O
    Phys Med Biol; 2006 Oct; 51(19):4869-81. PubMed ID: 16985276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetizable needles and wires--modeling an efficient way to target magnetic microspheres in vivo.
    Iacob G; Rotariu O; Strachan NJ; Häfeli UO
    Biorheology; 2004; 41(5):599-612. PubMed ID: 15477667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Pot-Magnets to Enable Stable and Scalable Electromagnetic Tactile Displays.
    Zarate JJ; Shea H
    IEEE Trans Haptics; 2017; 10(1):106-112. PubMed ID: 27448370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaping magnetic fields to direct therapy to ears and eyes.
    Shapiro B; Kulkarni S; Nacev A; Sarwar A; Preciado D; Depireux DA
    Annu Rev Biomed Eng; 2014 Jul; 16():455-81. PubMed ID: 25014789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational simulation of electromagnetic fields on human targets for magnetic targeting applications.
    Fiocchi S; Chiaramello E; Bonato M; Tognola G; Catalucci D; Parazzini M; Ravazzani P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5674-5677. PubMed ID: 31947140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces.
    Panina LV; Gurevich A; Beklemisheva A; Omelyanchik A; Levada K; Rodionova V
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Measurement and Stimulation of Cellular and Intracellular Structures.
    Wang X; Law J; Luo M; Gong Z; Yu J; Tang W; Zhang Z; Mei X; Huang Z; You L; Sun Y
    ACS Nano; 2020 Apr; 14(4):3805-3821. PubMed ID: 32223274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.
    Tehrani MD; Yoon JH; Kim MO; Yoon J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic force investigation of electromagnets with variable pole area in an electromagnetic diaphragm pump.
    Liao Y; Liu Y; Xing J; Chen B; Gao L
    PLoS One; 2023; 18(10):e0292685. PubMed ID: 37824558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target.
    Nacev A; Weinberg IN; Stepanov PY; Kupfer S; Mair LO; Urdaneta MG; Shimoji M; Fricke ST; Shapiro B
    Nano Lett; 2015 Jan; 15(1):359-64. PubMed ID: 25457292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal Locomotion and Active Targeted Thermal Control of Magnetic Agents for Biomedical Applications.
    Ramos-Sebastian A; Gwak SJ; Kim SH
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103863. PubMed ID: 35060366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized electromagnetic actuation method for aggregated nanoparticles steering.
    Hoshiar AK; Tuan-Anh Le ; Amin FU; Myeong Ok Kim ; Jungwon Yoon
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():885-888. PubMed ID: 29060014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold magnetic field as a universal criterion for the selective transport of magnetized particles in microdroplets.
    Bono S; Konishi S
    Sci Rep; 2023 Jun; 13(1):9428. PubMed ID: 37296175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source.
    Pourshahidi AM; Achtsnicht S; Offenhäusser A; Krause HJ
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery.
    Van Durme R; Crevecoeur G; Dupré L; Coene A
    Drug Deliv; 2021 Dec; 28(1):63-76. PubMed ID: 33342319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.