BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 32817100)

  • 1. Interactive Regulation of Formate Dehydrogenase during CO
    Zhang L; Liu Y; Zhao R; Zhang C; Jiang W; Gu Y
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein acetylation-mediated cross regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii.
    Liu Y; Zhang Z; Jiang W; Gu Y
    J Biol Chem; 2022 Feb; 298(2):101538. PubMed ID: 34954142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
    Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP
    mBio; 2016 May; 7(3):. PubMed ID: 27222467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum.
    Piatek P; Humphreys C; Raut MP; Wright PC; Simpson S; Köpke M; Minton NP; Winzer K
    Sci Rep; 2022 Jan; 12(1):411. PubMed ID: 35013405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pleiotropic Regulator GssR Positively Regulates Autotrophic Growth of Gas-Fermenting
    Zhang H; Zhang C; Nie X; Wu Y; Yang C; Jiang W; Gu Y
    Microorganisms; 2023 Jul; 11(8):. PubMed ID: 37630531
    [No Abstract]   [Full Text] [Related]  

  • 7. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formate production through biocatalysis.
    Alissandratos A; Kim HK; Easton CJ
    Bioengineered; 2013; 4(5):348-50. PubMed ID: 23841981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pooled CRISPR Interference Screening Identifies Crucial Transcription Factors in Gas-Fermenting
    Zhang H; Feng H; Xing XH; Jiang W; Zhang C; Gu Y
    ACS Synth Biol; 2024 Jun; 13(6):1893-1905. PubMed ID: 38825826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium.
    Lo J; Wu C; Humphreys JR; Yang B; Jiang Z; Wang X; Maness P; Tsesmetzis N; Xiong W
    mSystems; 2023 Apr; 8(2):e0127422. PubMed ID: 36971551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Engineering of Gas-Fermenting
    Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y
    ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of a new metal and NAD
    Çakar MM; Mangas-Sanchez J; Birmingham WR; Turner NJ; Binay B
    Prep Biochem Biotechnol; 2018 Apr; 48(4):327-334. PubMed ID: 29504829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas-fermenting Clostridium ljungdahlii.
    Zhang C; Nie X; Zhang H; Wu Y; He H; Yang C; Jiang W; Gu Y
    Microb Biotechnol; 2021 Sep; 14(5):2072-2089. PubMed ID: 34291572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newly explored formate dehydrogenases from Clostridium species catalyze carbon dioxide to formate.
    Min K; Moon M; Park GW; Lee JP; Kim SJ; Lee JS
    Bioresour Technol; 2022 Mar; 348():126832. PubMed ID: 35149183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
    Huang H; Chai C; Yang S; Jiang W; Gu Y
    Metab Eng; 2019 Mar; 52():293-302. PubMed ID: 30633974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii.
    Yi J; Huang H; Liang J; Wang R; Liu Z; Li F; Wang S
    Microbiol Spectr; 2021 Oct; 9(2):e0095821. PubMed ID: 34643446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen
    Yao Y; Fu B; Han D; Zhang Y; Liu H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32948524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.