BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 32817118)

  • 1. Neuromuscular disease modeling on a chip.
    Santoso JW; McCain ML
    Dis Model Mech; 2020 Jul; 13(7):. PubMed ID: 32817118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices.
    de Jongh R; Spijkers XM; Pasteuning-Vuhman S; Vulto P; Pasterkamp RJ
    J Neurochem; 2021 May; 157(3):393-412. PubMed ID: 33382092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human motor units in microfluidic devices are impaired by FUS mutations and improved by HDAC6 inhibition.
    Stoklund Dittlau K; Krasnow EN; Fumagalli L; Vandoorne T; Baatsen P; Kerstens A; Giacomazzi G; Pavie B; Rossaert E; Beckers J; Sampaolesi M; Van Damme P; Van Den Bosch L
    Stem Cell Reports; 2021 Sep; 16(9):2213-2227. PubMed ID: 33891869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons.
    Osaki T; Uzel SGM; Kamm RD
    Sci Adv; 2018 Oct; 4(10):eaat5847. PubMed ID: 30324134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Microfluidic Models for Neurodegenerative Disorders.
    Osaki T; Shin Y; Sivathanu V; Campisi M; Kamm RD
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28881425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development.
    Sances S; Ho R; Vatine G; West D; Laperle A; Meyer A; Godoy M; Kay PS; Mandefro B; Hatata S; Hinojosa C; Wen N; Sareen D; Hamilton GA; Svendsen CN
    Stem Cell Reports; 2018 Apr; 10(4):1222-1236. PubMed ID: 29576540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular Junction-on-a-Chip for Amyotrophic Lateral Sclerosis Modeling.
    Alavi-Moghadam S; Kokabi-Hamidpour S; Rezaei-Tavirani M; Larijani B; Arjmand R; Rahim F; Rezazadeh-Mafi A; Adibi H; Arjmand B
    Methods Mol Biol; 2024; 2736():139-150. PubMed ID: 36749488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients.
    Liu ML; Zang T; Zhang CL
    Cell Rep; 2016 Jan; 14(1):115-128. PubMed ID: 26725112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis phenotype by preserving motor neurons and muscle innervation in human and rodent models.
    Nizzardo M; Bucchia M; Ramirez A; Trombetta E; Bresolin N; Comi GP; Corti S
    Hum Mol Genet; 2016 Aug; 25(15):3152-3163. PubMed ID: 27270413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The future of the patient-specific Body-on-a-chip.
    Williamson A; Singh S; Fernekorn U; Schober A
    Lab Chip; 2013 Sep; 13(18):3471-80. PubMed ID: 23685915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culture of Human iPSC-Derived Motoneurons in Compartmentalized Microfluidic Devices and Quantitative Assays for Studying Axonal Phenotypes.
    Garone MG; D'Antoni C; Rosa A
    Methods Mol Biol; 2022; 2429():189-199. PubMed ID: 35507162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Progress in the Creation, Characterization, and Application of Human Stem Cell-derived in Vitro Neuromuscular Junction Models.
    Lynch E; Peek E; Reilly M; FitzGibbons C; Robertson S; Suzuki M
    Stem Cell Rev Rep; 2022 Feb; 18(2):768-780. PubMed ID: 34212303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Modeling of Peripheral Neuro-Effector Communication and -Plasticity.
    Goldsteen PA; Dolga AM; Gosens R
    Physiology (Bethesda); 2020 Sep; 35(5):348-357. PubMed ID: 32783607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units.
    Uzel SG; Platt RJ; Subramanian V; Pearl TM; Rowlands CJ; Chan V; Boyer LA; So PT; Kamm RD
    Sci Adv; 2016 Aug; 2(8):e1501429. PubMed ID: 27493991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creating stem cell-derived neuromuscular junctions in vitro.
    Luttrell SM; Smith AST; Mack DL
    Muscle Nerve; 2021 Oct; 64(4):388-403. PubMed ID: 34328673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling ALS with motor neurons derived from human induced pluripotent stem cells.
    Sances S; Bruijn LI; Chandran S; Eggan K; Ho R; Klim JR; Livesey MR; Lowry E; Macklis JD; Rushton D; Sadegh C; Sareen D; Wichterle H; Zhang SC; Svendsen CN
    Nat Neurosci; 2016 Apr; 19(4):542-53. PubMed ID: 27021939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression.
    Bruneteau G; Simonet T; Bauché S; Mandjee N; Malfatti E; Girard E; Tanguy ML; Behin A; Khiami F; Sariali E; Hell-Remy C; Salachas F; Pradat PF; Fournier E; Lacomblez L; Koenig J; Romero NB; Fontaine B; Meininger V; Schaeffer L; Hantaï D
    Brain; 2013 Aug; 136(Pt 8):2359-68. PubMed ID: 23824486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.