These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32817119)

  • 1. Selective Removal of Sodium Salt Taste Disrupts the Maintenance of Dendritic Architecture of Gustatory Relay Neurons in the Mouse Nucleus of the Solitary Tract.
    Skyberg R; Sun C; Hill DL
    eNeuro; 2020; 7(5):. PubMed ID: 32817119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.
    Sun C; Hummler E; Hill DL
    J Neurosci; 2017 Jan; 37(3):660-672. PubMed ID: 28100747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood.
    Skyberg R; Sun C; Hill DL
    J Neurosci; 2017 Aug; 37(32):7619-7630. PubMed ID: 28676575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance of Mouse Gustatory Terminal Field Organization Is Dependent on BDNF at Adulthood.
    Sun C; Krimm R; Hill DL
    J Neurosci; 2018 Aug; 38(31):6873-6887. PubMed ID: 29954852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of early postnatal receptor damage on dendritic development in gustatory recipient zones of the rostral nucleus of the solitary tract.
    Lasiter PS
    Brain Res Dev Brain Res; 1991 Aug; 61(2):197-206. PubMed ID: 1721561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development of gustatory recipient zones within the nucleus of the solitary tract.
    Lasiter PS
    Brain Res Bull; 1992 May; 28(5):667-77. PubMed ID: 1617454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of early postnatal receptor damage on development of gustatory recipient zones within the nucleus of the solitary tract.
    Lasiter PS; Kachele DL
    Brain Res Dev Brain Res; 1990 Aug; 55(1):57-71. PubMed ID: 2208641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of salt-responsive neurons in the nucleus of the solitary tract.
    Liu YS; Schweitzer L; Renehan WE
    J Comp Neurol; 2000 Sep; 425(2):219-32. PubMed ID: 10954841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gustatory terminal field organization and developmental plasticity in the nucleus of the solitary tract revealed through triple-fluorescence labeling.
    May OL; Hill DL
    J Comp Neurol; 2006 Aug; 497(4):658-69. PubMed ID: 16739199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal diet during early gestation influences postnatal taste activity-dependent pruning by microglia.
    Sun C; Zheng S; Perry JSA; Norris GT; Cheng M; Kong F; Skyberg R; Cang J; Erisir A; Kipnis J; Hill DL
    J Exp Med; 2023 Dec; 220(12):. PubMed ID: 37733279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.
    Tang T; Rios-Pilier J; Krimm R
    Mol Cell Neurosci; 2017 Jul; 82():195-203. PubMed ID: 28600222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of GABA and GABA-transaminase containing neurons in the gustatory zone of the nucleus of the solitary tract.
    Lasiter PS; Kachele DL
    Brain Res Bull; 1988 Oct; 21(4):623-36. PubMed ID: 3208150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered taste responses in adult NST after neonatal chorda tympani denervation.
    Dinkins ME; Travers SP
    J Neurophysiol; 1999 Nov; 82(5):2565-78. PubMed ID: 10561427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic Stimulation of Type I GAD65
    Baumer-Harrison C; Raymond MA; Myers TA; Sussman KM; Rynberg ST; Ugartechea AP; Lauterbach D; Mast TG; Breza JM
    J Neurosci; 2020 Oct; 40(41):7795-7810. PubMed ID: 32878902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in the dendritic architecture of salt-sensitive neurons in the nucleus of the solitary tract.
    Renehan WE; Massey J; Jin Z; Zhang X; Liu YZ; Schweitzer L
    Brain Res Dev Brain Res; 1997 Sep; 102(2):231-46. PubMed ID: 9352106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence in mammalian nucleus of solitary tract during development and functional differentiation of salt taste circuits.
    Vogt MB; Mistretta CM
    J Neurosci; 1990 Sep; 10(9):3148-57. PubMed ID: 2398375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural circuits for taste. Excitation, inhibition, and synaptic plasticity in the rostral gustatory zone of the nucleus of the solitary tract.
    Bradley RM; Grabauskas G
    Ann N Y Acad Sci; 1998 Nov; 855():467-74. PubMed ID: 9929640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taste-evoked Fos expression in nitrergic neurons in the nucleus of the solitary tract and reticular formation of the rat.
    Travers SP; Travers JB
    J Comp Neurol; 2007 Feb; 500(4):746-60. PubMed ID: 17154256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-dose furosemide modulates taste responses in the nucleus of the solitary tract of the rat.
    Cho YK; Smith ME; Norgren R
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R706-14. PubMed ID: 15155275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster.
    Cho YK; Li CS; Smith DV
    Chem Senses; 2002 Jan; 27(1):81-90. PubMed ID: 11751472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.