These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 32817252)

  • 1. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction.
    Liu Y; Teng C; Xia R; Meyers BC
    Plant Cell; 2020 Oct; 32(10):3059-3080. PubMed ID: 32817252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal regulation and roles of reproductive phasiRNAs in plants.
    Komiya R
    Genes Genet Syst; 2022 Feb; 96(5):209-215. PubMed ID: 34759068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing.
    Komiya R
    J Plant Res; 2017 Jan; 130(1):17-23. PubMed ID: 27900550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses.
    Tamim S; Cai Z; Mathioni SM; Zhai J; Teng C; Zhang Q; Meyers BC
    New Phytol; 2018 Nov; 220(3):865-877. PubMed ID: 29708601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grass phasiRNAs and male fertility.
    Yu Y; Zhou Y; Zhang Y; Chen Y
    Sci China Life Sci; 2018 Feb; 61(2):148-154. PubMed ID: 29052095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-sensitive male sterility in rice determined by the roles of AGO1d in reproductive phasiRNA biogenesis and function.
    Shi C; Zhang J; Wu B; Jouni R; Yu C; Meyers BC; Liang W; Fei Q
    New Phytol; 2022 Nov; 236(4):1529-1544. PubMed ID: 36031742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 24-nt reproductive phasiRNAs are broadly present in angiosperms.
    Xia R; Chen C; Pokhrel S; Ma W; Huang K; Patel P; Wang F; Xu J; Liu Z; Li J; Meyers BC
    Nat Commun; 2019 Feb; 10(1):627. PubMed ID: 30733503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks.
    Fei Q; Xia R; Meyers BC
    Plant Cell; 2013 Jul; 25(7):2400-15. PubMed ID: 23881411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants.
    Deng P; Muhammad S; Cao M; Wu L
    Plant Biotechnol J; 2018 May; 16(5):965-975. PubMed ID: 29327403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa.
    Yu L; Guo R; Jiang Y; Ye X; Yang Z; Meng Y; Shao C
    BMC Genomics; 2021 Jan; 22(1):93. PubMed ID: 33516199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR2118-dependent U-rich phasiRNA production in rice anther wall development.
    Araki S; Le NT; Koizumi K; Villar-Briones A; Nonomura KI; Endo M; Inoue H; Saze H; Komiya R
    Nat Commun; 2020 Jun; 11(1):3115. PubMed ID: 32561756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved and non-conserved triggers of 24-nucleotide reproductive phasiRNAs in eudicots.
    Pokhrel S; Huang K; Meyers BC
    Plant J; 2021 Sep; 107(5):1332-1345. PubMed ID: 34160111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice.
    Fan Y; Yang J; Mathioni SM; Yu J; Shen J; Yang X; Wang L; Zhang Q; Cai Z; Xu C; Li X; Xiao J; Meyers BC; Zhang Q
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15144-15149. PubMed ID: 27965387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Noncoding RNAs: Hidden Players in Development and Stress Responses.
    Yu Y; Zhang Y; Chen X; Chen Y
    Annu Rev Cell Dev Biol; 2019 Oct; 35():407-431. PubMed ID: 31403819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive Families of miRNAs and PHAS Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants.
    Xia R; Xu J; Arikit S; Meyers BC
    Mol Biol Evol; 2015 Nov; 32(11):2905-18. PubMed ID: 26318183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microRNA biogenesis-like pathway for producing phased small interfering RNA from a long non-coding RNA in rice.
    Huang J; Wang R; Dai X; Feng J; Zhang H; Zhao PX
    J Exp Bot; 2019 Mar; 70(6):1767-1774. PubMed ID: 30775774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers.
    Zhai J; Zhang H; Arikit S; Huang K; Nan GL; Walbot V; Meyers BC
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3146-51. PubMed ID: 25713378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea.
    Srivastava S; Zheng Y; Kudapa H; Jagadeeswaran G; Hivrale V; Varshney RK; Sunkar R
    Plant Sci; 2015 Jun; 235():46-57. PubMed ID: 25900565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Imaging and In Situ Hybridization for Uncovering the Functions of MicroRNA in Rice Anther.
    Koizumi K; Komiya R
    Methods Mol Biol; 2022; 2509():93-104. PubMed ID: 35796959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways.
    Fei Q; Yang L; Liang W; Zhang D; Meyers BC
    J Exp Bot; 2016 Nov; 67(21):6037-6049. PubMed ID: 27702997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.