These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 32817254)
1. Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize. Liu Y; Su H; Zhang J; Shi L; Liu Y; Zhang B; Bai H; Liang S; Gao Z; Birchler JA; Han F Plant Cell; 2020 Oct; 32(10):3113-3123. PubMed ID: 32817254 [TBL] [Abstract][Full Text] [Related]
2. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Liu Y; Su H; Pang J; Gao Z; Wang XJ; Birchler JA; Han F Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1263-71. PubMed ID: 25733907 [TBL] [Abstract][Full Text] [Related]
3. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Han F; Lamb JC; Birchler JA Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3238-43. PubMed ID: 16492777 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of a centromere during the formation of a translocation in maize. Gao Z; Fu S; Dong Q; Han F; Birchler JA Chromosome Res; 2011 Aug; 19(6):755-61. PubMed ID: 21947957 [TBL] [Abstract][Full Text] [Related]
5. Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Lamb JC; Kato A; Birchler JA Chromosoma; 2005 Feb; 113(7):337-49. PubMed ID: 15586285 [TBL] [Abstract][Full Text] [Related]
6. Maize centromeres expand and adopt a uniform size in the genetic background of oat. Wang K; Wu Y; Zhang W; Dawe RK; Jiang J Genome Res; 2014 Jan; 24(1):107-16. PubMed ID: 24100079 [TBL] [Abstract][Full Text] [Related]
7. De novo centromere formation on a chromosome fragment in maize. Fu S; Lv Z; Gao Z; Wu H; Pang J; Zhang B; Dong Q; Guo X; Wang XJ; Birchler JA; Han F Proc Natl Acad Sci U S A; 2013 Apr; 110(15):6033-6. PubMed ID: 23530217 [TBL] [Abstract][Full Text] [Related]
8. De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea mays). Douglas RN; Yang H; Zhang B; Chen C; Han F; Cheng J; Birchler JA Chromosome Res; 2021 Dec; 29(3-4):313-325. PubMed ID: 34406545 [TBL] [Abstract][Full Text] [Related]
9. Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Zhang B; Lv Z; Pang J; Liu Y; Guo X; Fu S; Li J; Dong Q; Wu HJ; Gao Z; Wang XJ; Han F Plant Cell; 2013 Jun; 25(6):1979-89. PubMed ID: 23771890 [TBL] [Abstract][Full Text] [Related]
10. Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Koo DH; Han F; Birchler JA; Jiang J Genome Res; 2011 Jun; 21(6):908-14. PubMed ID: 21518739 [TBL] [Abstract][Full Text] [Related]
11. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Zhang W; Friebe B; Gill BS; Jiang J Chromosoma; 2010 Oct; 119(5):553-63. PubMed ID: 20499078 [TBL] [Abstract][Full Text] [Related]
12. Maize centromeres: organization and functional adaptation in the genetic background of oat. Jin W; Melo JR; Nagaki K; Talbert PB; Henikoff S; Dawe RK; Jiang J Plant Cell; 2004 Mar; 16(3):571-81. PubMed ID: 14973167 [TBL] [Abstract][Full Text] [Related]
13. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. Stimpson KM; Song IY; Jauch A; Holtgreve-Grez H; Hayden KE; Bridger JM; Sullivan BA PLoS Genet; 2010 Aug; 6(8):. PubMed ID: 20711355 [TBL] [Abstract][Full Text] [Related]
14. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons. Wolfgruber TK; Sharma A; Schneider KL; Albert PS; Koo DH; Shi J; Gao Z; Han F; Lee H; Xu R; Allison J; Birchler JA; Jiang J; Dawe RK; Presting GG PLoS Genet; 2009 Nov; 5(11):e1000743. PubMed ID: 19956743 [TBL] [Abstract][Full Text] [Related]
15. Dicentric chromosome formation and epigenetics of centromere formation in plants. Fu S; Gao Z; Birchler J; Han F J Genet Genomics; 2012 Mar; 39(3):125-30. PubMed ID: 22464471 [TBL] [Abstract][Full Text] [Related]
16. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Han F; Gao Z; Birchler JA Plant Cell; 2009 Jul; 21(7):1929-39. PubMed ID: 19602622 [TBL] [Abstract][Full Text] [Related]
17. Genetic and epigenetic effects on centromere establishment. Ling YH; Lin Z; Yuen KWY Chromosoma; 2020 Mar; 129(1):1-24. PubMed ID: 31781852 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. Dong Q; Han F Plant J; 2012 Sep; 71(5):800-9. PubMed ID: 22519817 [TBL] [Abstract][Full Text] [Related]
19. Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3. Zhao H; Zeng Z; Koo DH; Gill BS; Birchler JA; Jiang J Chromosome Res; 2017 Oct; 25(3-4):299-311. PubMed ID: 28831743 [TBL] [Abstract][Full Text] [Related]
20. Stable Patterns of CENH3 Occupancy Through Maize Lineages Containing Genetically Similar Centromeres. Gent JI; Wang K; Jiang J; Dawe RK Genetics; 2015 Aug; 200(4):1105-16. PubMed ID: 26063660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]