These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 32817425)
1. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Liu WY; Lin HH; Yu CP; Chang CK; Chen HJ; Lin JJ; Lu MJ; Tu SL; Shiu SH; Wu SH; Ku MSB; Li WH Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21747-21756. PubMed ID: 32817425 [No Abstract] [Full Text] [Related]
2. Regulators of early maize leaf development inferred from transcriptomes of laser capture microdissection (LCM)-isolated embryonic leaf cells. Liu WY; Yu CP; Chang CK; Chen HJ; Li MY; Chen YH; Shiu SH; Ku MSB; Tu SL; Lu MJ; Li WH Proc Natl Acad Sci U S A; 2022 Aug; 119(35):e2208795119. PubMed ID: 36001691 [TBL] [Abstract][Full Text] [Related]
3. Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. Yeh SY; Lin HH; Chang YM; Chang YL; Chang CK; Huang YC; Ho YW; Lin CY; Zheng JZ; Jane WN; Ng CY; Lu MY; Lai IL; To KY; Li WH; Ku MSB Plant Physiol; 2022 Jan; 188(1):442-459. PubMed ID: 34747472 [TBL] [Abstract][Full Text] [Related]
4. Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. Coneva V; Guevara D; Rothstein SJ; Colasanti J J Exp Bot; 2012 Sep; 63(14):5079-92. PubMed ID: 22791826 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Wang P; Kelly S; Fouracre JP; Langdale JA Plant J; 2013 Aug; 75(4):656-70. PubMed ID: 23647263 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Yu CP; Chen SC; Chang YM; Liu WY; Lin HH; Lin JJ; Chen HJ; Lu YJ; Wu YH; Lu MY; Lu CH; Shih AC; Ku MS; Shiu SH; Wu SH; Li WH Proc Natl Acad Sci U S A; 2015 May; 112(19):E2477-86. PubMed ID: 25918418 [TBL] [Abstract][Full Text] [Related]
7. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. Tausta SL; Li P; Si Y; Gandotra N; Liu P; Sun Q; Brutnell TP; Nelson T J Exp Bot; 2014 Jul; 65(13):3543-55. PubMed ID: 24790109 [TBL] [Abstract][Full Text] [Related]
8. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Yuan N; Wang J; Zhou Y; An D; Xiao Q; Wang W; Wu Y Plant Sci; 2019 Oct; 287():110203. PubMed ID: 31481208 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of a novel maize Fan Z; Kong M; Ma L; Duan S; Gao N; Xuqing C; Yongsheng T Plant Signal Behav; 2020 Aug; 15(8):1777374. PubMed ID: 32538297 [TBL] [Abstract][Full Text] [Related]
10. Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. Coneva V; Zhu T; Colasanti J J Exp Bot; 2007; 58(13):3679-93. PubMed ID: 17928372 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize. Chotewutmontri P; Barkan A PLoS Genet; 2016 Jul; 12(7):e1006106. PubMed ID: 27414025 [TBL] [Abstract][Full Text] [Related]
12. Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Slewinski TL; Anderson AA; Zhang C; Turgeon R Plant Cell Physiol; 2012 Dec; 53(12):2030-7. PubMed ID: 23128603 [TBL] [Abstract][Full Text] [Related]
13. A large deletion conferring pale green leaves of maize. Yao G; Zhang H; Leng B; Cao B; Shan J; Yan Z; Guan H; Cheng W; Liu X; Mu C BMC Plant Biol; 2023 Jul; 23(1):360. PubMed ID: 37452313 [TBL] [Abstract][Full Text] [Related]
14. Cytological evidence of BSD2 functioning in both chloroplast division and dimorphic chloroplast formation in maize leaves. Li H; Bai M; Jiang X; Shen R; Wang H; Wang H; Wu H BMC Plant Biol; 2020 Jan; 20(1):17. PubMed ID: 31918680 [TBL] [Abstract][Full Text] [Related]
15. Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1. Alter P; Bircheneder S; Zhou LZ; Schlüter U; Gahrtz M; Sonnewald U; Dresselhaus T Plant Physiol; 2016 Sep; 172(1):389-404. PubMed ID: 27457125 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. Chang YM; Lin HH; Liu WY; Yu CP; Chen HJ; Wartini PP; Kao YY; Wu YH; Lin JJ; Lu MJ; Tu SL; Wu SH; Shiu SH; Ku MSB; Li WH Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3091-3099. PubMed ID: 30718437 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta. Shi K; Gu J; Guo H; Zhao L; Xie Y; Xiong H; Li J; Zhao S; Song X; Liu L PLoS One; 2017; 12(5):e0177992. PubMed ID: 28542341 [TBL] [Abstract][Full Text] [Related]
18. Setaria viridis chlorotic and seedling-lethal mutants define critical functions for chloroplast gene expression. Feiz L; Strickler SR; van Eck J; Mao L; Movahed N; Taylor C; Gourabathini P; Fei Z; Stern DB Plant J; 2020 Nov; 104(4):917-931. PubMed ID: 32812296 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome profiling of genes and pathways involved in leaf-patterning of Clivia miniata var. variegata. Wang QM; Cui J; Dai H; Zhou Y; Li N; Zhang Z Gene; 2018 Nov; 677():280-288. PubMed ID: 30077010 [TBL] [Abstract][Full Text] [Related]
20. Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO Kolbe AR; Studer AJ; Cornejo OE; Cousins AB BMC Genomics; 2019 Feb; 20(1):138. PubMed ID: 30767781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]