BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32817473)

  • 1. Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere.
    McDermott JM; Sylva SP; Ono S; German CR; Seewald JS
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20453-20461. PubMed ID: 32817473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems.
    McCollom TM; Shock EL
    Geochim Cosmochim Acta; 1997 Oct; 61(20):4375-91. PubMed ID: 11541662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field.
    Eickmann B; Thorseth IH; Peters M; Strauss H; Bröcker M; Pedersen RB
    Geobiology; 2014 Jul; 12(4):308-21. PubMed ID: 24725254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field.
    Brazelton WJ; McGonigle JM; Motamedi S; Pendleton HL; Twing KI; Miller BC; Lowe WJ; Hoffman AM; Prator CA; Chadwick GL; Anderson RE; Thomas E; Butterfield DA; Aquino KA; Früh-Green GL; Schrenk MO; Lang SQ
    Appl Environ Microbiol; 2022 Sep; 88(17):e0092922. PubMed ID: 35950875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.
    Perner M; Hansen M; Seifert R; Strauss H; Koschinsky A; Petersen S
    Geobiology; 2013 Jul; 11(4):340-55. PubMed ID: 23647923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.
    Klein F; Humphris SE; Guo W; Schubotz F; Schwarzenbach EM; Orsi WD
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12036-41. PubMed ID: 26324888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents.
    Stewart LC; Algar CK; Fortunato CS; Larson BI; Vallino JJ; Huber JA; Butterfield DA; Holden JF
    ISME J; 2019 Jul; 13(7):1711-1721. PubMed ID: 30842565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems.
    Shock EL; McCollom T; Schulte MD
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):141-59. PubMed ID: 11536667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise.
    Reveillaud J; Reddington E; McDermott J; Algar C; Meyer JL; Sylva S; Seewald J; German CR; Huber JA
    Environ Microbiol; 2016 Jun; 18(6):1970-87. PubMed ID: 26663423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.
    Zhou X; Chen D; Tang D; Dong S; Guo C; Guo Z; Zhang Y
    Astrobiology; 2015 Jul; 15(7):523-37. PubMed ID: 26168395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece.
    Gilhooly WP; Fike DA; Druschel GK; Kafantaris FC; Price RE; Amend JP
    Geochem Trans; 2014; 15():12. PubMed ID: 25183951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of methanethiol in midocean ridge hydrothermal fluids.
    Reeves EP; McDermott JM; Seewald JS
    Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5474-9. PubMed ID: 24706901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent.
    Perner M; Petersen JM; Zielinski F; Gennerich HH; Seifert R
    FEMS Microbiol Ecol; 2010 Oct; 74(1):55-71. PubMed ID: 20662930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetic characterization of a shallow-sea hydrothermal vent system: Milos Island, Greece.
    Lu GS; LaRowe DE; Fike DA; Druschel GK; Gilhooly WP; Price RE; Amend JP
    PLoS One; 2020; 15(6):e0234175. PubMed ID: 32502166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogeochemistry of dihydrogen (H2).
    Hoehler TM
    Met Ions Biol Syst; 2005; 43():9-48. PubMed ID: 16370113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems.
    Humphris SE; Klein F
    Ann Rev Mar Sci; 2018 Jan; 10():315-343. PubMed ID: 28853997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents.
    Frank KL; Rogers DR; Olins HC; Vidoudez C; Girguis PR
    ISME J; 2013 Jul; 7(7):1391-401. PubMed ID: 23535916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.
    Akerman NH; Price RE; Pichler T; Amend JP
    Geobiology; 2011 Sep; 9(5):436-45. PubMed ID: 21884364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center.
    Anantharaman K; Breier JA; Dick GJ
    ISME J; 2016 Jan; 10(1):225-39. PubMed ID: 26046257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.
    Dahle H; Økland I; Thorseth IH; Pederesen RB; Steen IH
    ISME J; 2015 Jul; 9(7):1593-606. PubMed ID: 25575309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.