These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32817481)

  • 1. Membrane-assisted radiant cooling for expanding thermal comfort zones globally without air conditioning.
    Teitelbaum E; Chen KW; Aviv D; Bradford K; Ruefenacht L; Sheppard D; Teitelbaum M; Meggers F; Pantelic J; Rysanek A
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21162-21169. PubMed ID: 32817481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Type of Air Conditioning System Based on Finned Ceiling Radiant Coupled with Independent Fresh Air and Its Thermal Comfort Experimental Study.
    Qin W; Hu Y; Su J; Hu Y
    Comput Intell Neurosci; 2022; 2022():4144569. PubMed ID: 36164419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal sensations and comfort investigations in transient conditions in tropical office.
    Dahlan ND; Gital YY
    Appl Ergon; 2016 May; 54():169-76. PubMed ID: 26851476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China.
    Yang W; Zhang G
    Int J Biometeorol; 2008 May; 52(5):385-98. PubMed ID: 18074157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.
    Guéritée J; Tipton MJ
    Physiol Behav; 2015 Feb; 139():378-85. PubMed ID: 25437244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fresh (air) look at ventilation for COVID-19: Estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies.
    Aviv D; Chen KW; Teitelbaum E; Sheppard D; Pantelic J; Rysanek A; Meggers F
    Appl Energy; 2021 Jun; 292():116848. PubMed ID: 33776191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field study of pedestrians' comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses.
    Othman NE; Zaki SA; Rijal HB; Ahmad NH; Razak AA
    Int J Biometeorol; 2021 Apr; 65(4):453-477. PubMed ID: 33416948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform.
    Middel A; Krayenhoff ES
    Sci Total Environ; 2019 Oct; 687():137-151. PubMed ID: 31207504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Globe thermometer free convection error potentials.
    Teitelbaum E; Chen KW; Meggers F; Guo H; Houchois N; Pantelic J; Rysanek A
    Sci Rep; 2020 Feb; 10(1):2652. PubMed ID: 32060327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field assessment of winter outdoor 3-D radiant environment and its impact on thermal comfort in a severely cold region.
    Du J; Sun C; Xiao Q; Chen X; Liu J
    Sci Total Environ; 2020 Mar; 709():136175. PubMed ID: 31905593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiant heat and thermal comfort in vehicles.
    Devonshire JM; Sayer JR
    Hum Factors; 2005; 47(4):827-39. PubMed ID: 16553069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field evaluation of thermal and acoustical comfort in eight North-American buildings using embedded radiant systems.
    Dawe M; Karmann C; Schiavon S; Bauman F
    PLoS One; 2021; 16(10):e0258888. PubMed ID: 34699543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporative misters for urban cooling and comfort: effectiveness and motivations for use.
    Vanos JK; Wright MK; Kaiser A; Middel A; Ambrose H; Hondula DM
    Int J Biometeorol; 2022 Feb; 66(2):357-369. PubMed ID: 33244662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling radiative heat flows in interior spaces to improve heating and cooling efficiency.
    Xu J; Raman AP
    iScience; 2021 Aug; 24(8):102825. PubMed ID: 34355151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human thermal physiological and psychological responses under different heating environments.
    Wang Z; Ning H; Ji Y; Hou J; He Y
    J Therm Biol; 2015 Aug; 52():177-86. PubMed ID: 26267512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air movement preferences observed in naturally ventilated buildings in humid subtropical climate zone in China.
    Yang W; Zhang G
    Int J Biometeorol; 2009 Nov; 53(6):563-73. PubMed ID: 19618217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urban woodland on intensive green roof improved outdoor thermal comfort in subtropical summer.
    Lee LSH; Jim CY
    Int J Biometeorol; 2019 Jul; 63(7):895-909. PubMed ID: 31154507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.
    Schiavon S; Yang B; Donner Y; Chang VW; Nazaroff WW
    Indoor Air; 2017 May; 27(3):690-702. PubMed ID: 27754563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing a systematic error correcting for free and mixed convection when measuring mean radiant temperature with globe thermometers.
    Teitelbaum E; Alsaad H; Aviv D; Kim A; Voelker C; Meggers F; Pantelic J
    Sci Rep; 2022 Apr; 12(1):6473. PubMed ID: 35440747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.