These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32817642)

  • 1. The frequent complete subgraphs in the human connectome.
    Fellner M; Varga B; Grolmusz V
    PLoS One; 2020; 15(8):e0236883. PubMed ID: 32817642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    PLoS One; 2016; 11(6):e0158680. PubMed ID: 27362431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The frequent subgraphs of the connectome of the human brain.
    Fellner M; Varga B; Grolmusz V
    Cogn Neurodyn; 2019 Oct; 13(5):453-460. PubMed ID: 31565090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.
    Kerepesi C; Varga B; Szalkai B; Grolmusz V
    Neurosci Lett; 2018 Apr; 673():51-55. PubMed ID: 29496609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Frequent Network Neighborhood Mapping of the human hippocampus shows much more frequent neighbor sets in males than in females.
    Fellner M; Varga B; Grolmusz V
    PLoS One; 2020; 15(1):e0227910. PubMed ID: 31990956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's.
    Szalkai B; Varga B; Grolmusz V
    PLoS One; 2015; 10(7):e0130045. PubMed ID: 26132764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Budapest Reference Connectome Server v2.0.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    Neurosci Lett; 2015 May; 595():60-2. PubMed ID: 25862487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding maximally disconnected subnetworks with shortest path tractography.
    Greene C; Cieslak M; Volz LJ; Hensel L; Grefkes C; Rose K; Grafton ST
    Neuroimage Clin; 2019; 23():101903. PubMed ID: 31491834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edge-colored directed subgraph enumeration on the connectome.
    Matejek B; Wei D; Chen T; Tsourakakis CE; Mitzenmacher M; Pfister H
    Sci Rep; 2022 Jul; 12(1):11349. PubMed ID: 35790766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method.
    Szalkai B; Varga B; Grolmusz V
    Brain Imaging Behav; 2019 Oct; 13(5):1185-1192. PubMed ID: 30088220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative connectomics: Mapping the inter-individual variability of connections within the regions of the human brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    Neurosci Lett; 2018 Jan; 662():17-21. PubMed ID: 28988973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential.
    Yeh CH; Smith RE; Dhollander T; Calamante F; Connelly A
    Neuroimage; 2019 Oct; 199():160-171. PubMed ID: 31082471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.
    Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The braingraph.org database with more than 1000 robust human connectomes in five resolutions.
    Varga B; Grolmusz V
    Cogn Neurodyn; 2021 Oct; 15(5):915-919. PubMed ID: 34603551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Graph of Our Mind.
    Szalkai B; Varga B; Grolmusz V
    Brain Sci; 2021 Mar; 11(3):. PubMed ID: 33800527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution directed human connectomes and the Consensus Connectome Dynamics.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    PLoS One; 2019; 14(4):e0215473. PubMed ID: 30990832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust circuitry-based scores of structural importance of human brain areas.
    Hegedűs D; Grolmusz V
    PLoS One; 2024; 19(1):e0292613. PubMed ID: 38232101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Robustness and the Doubly-Preferential Attachment Simulation of the Consensus Connectome Dynamics of the Human Brain.
    Szalkai B; Varga B; Grolmusz V
    Sci Rep; 2017 Nov; 7(1):16118. PubMed ID: 29170405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering sex and age implicator edges in the human connectome.
    Keresztes L; Szögi E; Varga B; Grolmusz V
    Neurosci Lett; 2022 Nov; 791():136913. PubMed ID: 36272557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameterizable consensus connectomes from the Human Connectome Project: the Budapest Reference Connectome Server v3.0.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    Cogn Neurodyn; 2017 Feb; 11(1):113-116. PubMed ID: 28174617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.