These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32817746)

  • 1. Tissue alkaline phosphatase activity and expression in an experimental infant swine model of cardiopulmonary bypass with deep hypothermic circulatory arrest.
    Khailova L; Robison J; Jaggers J; Ing R; Lawson S; Treece A; Soranno D; Osorio Lujan S; Davidson JA
    J Inflamm (Lond); 2020; 17():27. PubMed ID: 32817746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkaline Phosphatase Treatment of Acute Kidney Injury in an Infant Piglet Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest.
    Davidson JA; Khailova L; Treece A; Robison J; Soranno DE; Jaggers J; Ing RJ; Lawson S; Lujan SO
    Sci Rep; 2019 Oct; 9(1):14175. PubMed ID: 31578351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiopulmonary bypass and circulatory arrest increase endothelin-1 production and receptor expression in the lung.
    Kirshbom PM; Page SO; Jacobs MT; Tsui SS; Bello E; Ungerleider RM; Schwinn DA; Gaynor JW
    J Thorac Cardiovasc Surg; 1997 Apr; 113(4):777-83. PubMed ID: 9104988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.
    Aharon AS; Mulloy MR; Drinkwater DC; Lao OB; Johnson MD; Thunder M; Yu C; Chang P
    Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model.
    Jungwirth B; Mackensen GB; Blobner M; Neff F; Reichart B; Kochs EF; Nollert G
    J Thorac Cardiovasc Surg; 2006 Apr; 131(4):805-12. PubMed ID: 16580438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal mast cells mediate gut injury and systemic inflammation in a rat model of deep hypothermic circulatory arrest.
    Karhausen J; Qing M; Gibson A; Moeser AJ; Griefingholt H; Hale LP; Abraham SN; Mackensen GB
    Crit Care Med; 2013 Sep; 41(9):e200-10. PubMed ID: 23478660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a leukocyte-depleting filter on cerebral and renal recovery after deep hypothermic circulatory arrest.
    Langley SM; Chai PJ; Tsui SS; Jaggers JJ; Ungerleider RM
    J Thorac Cardiovasc Surg; 2000 Jun; 119(6):1262-9. PubMed ID: 10838546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in near infrared spectroscopy during deep hypothermic circulatory arrest.
    Tobias JD; Russo P; Russo J
    Ann Card Anaesth; 2009; 12(1):17-21. PubMed ID: 19136750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.
    Allibhai T; DiGeronimo R; Whitin J; Salazar J; Yu TT; Ling XB; Cohen H; Dixon P; Madan A
    J Thorac Cardiovasc Surg; 2009 Dec; 138(6):1290-6. PubMed ID: 19660276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of granulocyte-colony stimulating factor on expression of selected proteins involved in regulation of apoptosis in the brain of newborn piglets after cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Pastuszko P; Schears GJ; Pirzadeh A; Kubin J; Greeley WJ; Wilson DF; Pastuszko A
    J Thorac Cardiovasc Surg; 2012 Jun; 143(6):1436-42. PubMed ID: 22306220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calpain inhibition decreases endothelin-1 levels and pulmonary hypertension after cardiopulmonary bypass with deep hypothermic circulatory arrest.
    Duffy JY; Schwartz SM; Lyons JM; Bell JH; Wagner CJ; Zingarelli B; Pearl JM
    Crit Care Med; 2005 Mar; 33(3):623-8. PubMed ID: 15753756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition of intestinal fatty acid-binding protein on hypothermic circulatory arrest with cardiopulmonary bypass.
    Kano H; Takahashi H; Inoue T; Tanaka H; Okita Y
    Perfusion; 2017 Apr; 32(3):200-205. PubMed ID: 27765895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets.
    Schultz S; Antoni D; Shears G; Markowitz S; Pastuszko P; Greeley W; Wilson DF; Pastuszko A
    J Thorac Cardiovasc Surg; 2006 Oct; 132(4):839-44. PubMed ID: 17000295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep hypothermic circulatory arrest during the arterial switch operation is associated with reduction in cerebral oxygen extraction but no increase in white matter injury.
    Drury PP; Gunn AJ; Bennet L; Ganeshalingham A; Finucane K; Buckley D; Beca J
    J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1327-33. PubMed ID: 23499473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preoperative glucocorticoids decrease pulmonary hypertension in piglets after cardiopulmonary bypass and circulatory arrest.
    Pearl JM; Schwartz SM; Nelson DP; Wagner CJ; Lyons JM; Bauer SM; Duffy JY
    Ann Thorac Surg; 2004 Mar; 77(3):994-1000. PubMed ID: 14992914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac surgery with deep hypothermic circulatory arrest produces less systemic inflammatory response than low-flow cardiopulmonary bypass in newborns.
    Tassani P; Barankay A; Haas F; Paek SU; Heilmaier M; Hess J; Lange R; Richter JA
    J Thorac Cardiovasc Surg; 2002 Apr; 123(4):648-54. PubMed ID: 11986591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically variable bypass reduces enzymuria after deep hypothermic circulatory arrest.
    Singal RK; Docking LM; Girling LG; Graham MR; Nickerson PW; McManus BM; Magil AB; Walker EK; Warrian RK; Cheang MS; Mutch WA
    Ann Thorac Surg; 2006 Oct; 82(4):1480-8. PubMed ID: 16996957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest.
    Cho DG; Mulloy MR; Chang PA; Johnson MD; Aharon AS; Robison TA; Buckles TL; Byrne DW; Drinkwater DC
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1033-40. PubMed ID: 15052200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.