These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32818315)

  • 21. Effect of cyclization of N-terminal glutamine and carbamidomethyl-cysteine (residues) on the chromatographic behavior of peptides in reversed-phase chromatography.
    Reimer J; Shamshurin D; Harder M; Yamchuk A; Spicer V; Krokhin OV
    J Chromatogr A; 2011 Aug; 1218(31):5101-7. PubMed ID: 21665210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of ion-pairing reagents on the prediction of peptide retention in reversed-phase high-performance liquid chromatography.
    Guo DC; Mant CT; Hodges RS
    J Chromatogr; 1987 Jan; 386():205-22. PubMed ID: 3558604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptide Retention Time Prediction in Hydrophilic Interaction Liquid Chromatography: Data Collection Methods and Features of Additive and Sequence-Specific Models.
    Krokhin OV; Ezzati P; Spicer V
    Anal Chem; 2017 May; 89(10):5526-5533. PubMed ID: 28429592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unifying expression scale for peptide hydrophobicity in proteomic reversed phase high-pressure liquid chromatography experiments.
    Grigoryan M; Shamshurin D; Spicer V; Krokhin OV
    Anal Chem; 2013 Nov; 85(22):10878-86. PubMed ID: 24127634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics.
    Dwivedi RC; Spicer V; Harder M; Antonovici M; Ens W; Standing KG; Wilkins JA; Krokhin OV
    Anal Chem; 2008 Sep; 80(18):7036-42. PubMed ID: 18686972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of accurate peptide retention data for targeted and data independent quantitative LC-MS analysis: Chromatographic lessons in proteomics.
    Krokhin OV; Spicer V
    Proteomics; 2016 Dec; 16(23):2931-2936. PubMed ID: 27701844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide retention time prediction in hydrophilic interaction liquid chromatography: Zwitter-ionic sulfoalkylbetaine and phosphorylcholine stationary phases.
    Yeung D; Klaassen N; Mizero B; Spicer V; Krokhin OV
    J Chromatogr A; 2020 May; 1619():460909. PubMed ID: 32007221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.
    Baczek T; Kaliszan R
    Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utility of retention prediction model for investigation of peptide separation selectivity in reversed-phase liquid chromatography: impact of concentration of trifluoroacetic acid, column temperature, gradient slope and type of stationary phase.
    Gilar M; Xie H; Jaworski A
    Anal Chem; 2010 Jan; 82(1):265-75. PubMed ID: 19957962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the mobile phase composition on the separation and detection of intact proteins by reversed-phase liquid chromatography-electrospray mass spectrometry.
    García MC; Hogenboom AC; Zappey H; Irth H
    J Chromatogr A; 2002 May; 957(2):187-99. PubMed ID: 12113342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography-mass spectrometry using monolithic columns and acidic or alkaline mobile phases.
    Tholey A; Toll H; Huber CG
    Anal Chem; 2005 Jul; 77(14):4618-25. PubMed ID: 16013881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissolving Peptides in 0.1% Formic Acid Brings Risk of Artificial Formylation.
    Lenčo J; Khalikova MA; Švec F
    J Proteome Res; 2020 Mar; 19(3):993-999. PubMed ID: 32068400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universal retention standard for peptide separations using various modes of high-performance liquid chromatography.
    Klaassen N; Spicer V; Krokhin OV
    J Chromatogr A; 2019 Mar; 1588():163-168. PubMed ID: 30626502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting peptide retention times for proteomics.
    Krokhin OV; Spicer V
    Curr Protoc Bioinformatics; 2010 Sep; Chapter 13():Unit 13.14. PubMed ID: 20836075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic analysis optimization: selective protein sample on-column retention in reverse-phase liquid chromatography.
    Winnik WM; Ortiz PA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(2):478-86. PubMed ID: 18926777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solvent selectivity and strength in reversed-phase liquid chromatography separation of peptides.
    Gilar M; Jaworski A; McDonald TS
    J Chromatogr A; 2014 Apr; 1337():140-6. PubMed ID: 24636558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Operational variables in high-performance liquid chromatography-electrospray ionization mass spectrometry of peptides and proteins using poly(styrene-divinylbenzene) monoliths.
    Walcher W; Toll H; Ingendoh A; Huber CG
    J Chromatogr A; 2004 Oct; 1053(1-2):107-17. PubMed ID: 15543977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model for predicting slopes S in the basic equation for the linear-solvent-strength theory of peptide separation by reversed-phase high-performance liquid chromatography.
    Vu H; Spicer V; Gotfrid A; Krokhin OV
    J Chromatogr A; 2010 Jan; 1217(4):489-97. PubMed ID: 20004401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.