These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 32818442)

  • 1. Microalgal Torrefaction for Solid Biofuel Production.
    Ho SH; Zhang C; Tao F; Zhang C; Chen WH
    Trends Biotechnol; 2020 Sep; 38(9):1023-1033. PubMed ID: 32818442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative torrefaction performance of microalga Nannochloropsis Oceanica towards an upgraded microalgal solid biofuel.
    Zhang C; Ho SH; Chen WH; Wang R; Show PL; Ong HC
    J Biotechnol; 2021 Sep; 338():81-90. PubMed ID: 34298023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative torrefaction of microalga Nannochloropsis Oceanica activated by potassium carbonate for solid biofuel production.
    Zhang C; Li F; Ho SH; Chen WH; Gunarathne DS; Show PL
    Environ Res; 2022 Sep; 212(Pt C):113389. PubMed ID: 35561822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
    Larkum AW; Ross IL; Kruse O; Hankamer B
    Trends Biotechnol; 2012 Apr; 30(4):198-205. PubMed ID: 22178650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemical conversion of microalgal biomass into biofuels: a review.
    Chen WH; Lin BJ; Huang MY; Chang JS
    Bioresour Technol; 2015 May; 184():314-327. PubMed ID: 25479688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of water washing and KOH activation for upgrading microalgal torrefied biochar.
    Zhang C; Fang J; Chen WH; Kwon EE; Zhang Y
    Sci Total Environ; 2024 Apr; 921():171254. PubMed ID: 38408659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy balance of torrefied microalgal biomass with production upscale approached by life cycle assessment.
    Rivera DRT; Ubando AT; Chen WH; Culaba AB
    J Environ Manage; 2021 Sep; 294():112992. PubMed ID: 34116302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.
    Park H; Lee CG
    Biotechnol J; 2016 Nov; 11(11):1461-1470. PubMed ID: 27782372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal Enzymes with Biotechnological Applications.
    Vingiani GM; De Luca P; Ianora A; Dobson ADW; Lauritano C
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31387272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods of downstream processing for the production of biodiesel from microalgae.
    Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW
    Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green genes: bioinformatics and systems-biology innovations drive algal biotechnology.
    Reijnders MJ; van Heck RG; Lam CM; Scaife MA; dos Santos VA; Smith AG; Schaap PJ
    Trends Biotechnol; 2014 Dec; 32(12):617-26. PubMed ID: 25457388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.
    Ho SH; Ye X; Hasunuma T; Chang JS; Kondo A
    Biotechnol Adv; 2014 Dec; 32(8):1448-59. PubMed ID: 25285758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Bottlenecks and Challenges of the Microalgal Biorefinery.
    Gifuni I; Pollio A; Safi C; Marzocchella A; Olivieri G
    Trends Biotechnol; 2019 Mar; 37(3):242-252. PubMed ID: 30301572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ten years of algal biofuel and bioproducts: gains and pains.
    Chen H; Li T; Wang Q
    Planta; 2019 Jan; 249(1):195-219. PubMed ID: 30603791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress?
    Salama ES; Govindwar SP; Khandare RV; Roh HS; Jeon BH; Li X
    Trends Plant Sci; 2019 Jul; 24(7):611-624. PubMed ID: 31085124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanobacteria and microalgae: a positive prospect for biofuels.
    Parmar A; Singh NK; Pandey A; Gnansounou E; Madamwar D
    Bioresour Technol; 2011 Nov; 102(22):10163-72. PubMed ID: 21924898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy.
    Misra N; Panda PK; Parida BK
    OMICS; 2013 Nov; 17(11):537-49. PubMed ID: 24044362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
    Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS
    Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.