These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32818444)

  • 1. Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds.
    Morya R; Salvachúa D; Thakur IS
    Trends Biotechnol; 2020 Sep; 38(9):963-975. PubMed ID: 32818444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnological potential within the genus Burkholderia.
    O'Sullivan LA; Mahenthiralingam E
    Lett Appl Microbiol; 2005; 41(1):8-11. PubMed ID: 15960745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils.
    Andreolli M; Lampis S; Zenaro E; Salkinoja-Salonen M; Vallini G
    FEMS Microbiol Lett; 2011 Jun; 319(1):11-8. PubMed ID: 21388438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.
    Kronenberg M; Trably E; Bernet N; Patureau D
    Environ Pollut; 2017 Dec; 231(Pt 1):509-523. PubMed ID: 28841503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-tagged fluorescent bacterial bioreporter for the study of polycyclic aromatic hydrocarbon diffusion and bioavailability.
    Tecon R; Binggeli O; van der Meer JR
    Environ Microbiol; 2009 Sep; 11(9):2271-83. PubMed ID: 19490030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation.
    Su XM; Bamba AM; Zhang S; Zhang YG; Hashmi MZ; Lin HJ; Ding LX
    Lett Appl Microbiol; 2018 Apr; 66(4):277-283. PubMed ID: 29350767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of polycyclic aromatic hydrocarbons by inoculated microorganisms in soil.
    Yuan SY; Shiung LC; Chang BV
    Bull Environ Contam Toxicol; 2002 Jul; 69(1):66-73. PubMed ID: 12053259
    [No Abstract]   [Full Text] [Related]  

  • 8. Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil.
    Sawulski P; Boots B; Clipson N; Doyle E
    Lett Appl Microbiol; 2015 Aug; 61(2):199-207. PubMed ID: 26031321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons.
    Aitken MD; Stringfellow WT; Nagel RD; Kazunga C; Chen SH
    Can J Microbiol; 1998 Aug; 44(8):743-52. PubMed ID: 9830104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil.
    Viñas M; Sabaté J; Espuny MJ; Solanas AM
    Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial degradation of aromatic compounds.
    Seo JS; Keum YS; Li QX
    Int J Environ Res Public Health; 2009 Jan; 6(1):278-309. PubMed ID: 19440284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil.
    Sabaté J; Viñas M; Solanas AM
    Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations.
    Kumari S; Das S
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):79676-79705. PubMed ID: 37330441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils.
    Bao H; Wang J; Zhang H; Li J; Li H; Wu F
    J Hazard Mater; 2020 Mar; 385():121595. PubMed ID: 31744730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of phnAc and nahAc in contaminated new zealand soils by competitive PCR.
    Laurie AD; Lloyd-Jones G
    Appl Environ Microbiol; 2000 May; 66(5):1814-7. PubMed ID: 10788344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil.
    Nam K; Kukor JJ
    Biodegradation; 2000; 11(1):1-9. PubMed ID: 11194968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new framework for approaching precision bioremediation of PAH contaminated soils.
    Redfern LK; Gardner CM; Hodzic E; Ferguson PL; Hsu-Kim H; Gunsch CK
    J Hazard Mater; 2019 Oct; 378():120859. PubMed ID: 31327574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy Metals as a Factor Increasing the Functional Genetic Potential of Bacterial Community for Polycyclic Aromatic Hydrocarbon Biodegradation.
    Staninska-Pięta J; Czarny J; Piotrowska-Cyplik A; Juzwa W; Wolko Ł; Nowak J; Cyplik P
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31941126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microbial degradation of soil polycyclic aromatic hydrocarbons (PAHs) and its relations to soil bacterial population diversity].
    Wang F; Su ZC; Yang H; Li XJ; Yang GP; Dong DB
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3020-6. PubMed ID: 20353072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil.
    Miao R; Guo M; Zhao X; Gong Z; Jia C; Li X; Zhuang J
    Chemosphere; 2020 Dec; 261():127779. PubMed ID: 32736249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.