These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32818619)

  • 1. Non-negative data-driven mapping of structural connections with application to the neonatal brain.
    Thompson E; Mohammadi-Nejad AR; Robinson EC; Andersson JLR; Jbabdi S; Glasser MF; Bastiani M; Sotiropoulos SN
    Neuroimage; 2020 Nov; 222():117273. PubMed ID: 32818619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling white matter in gyral blades as a continuous vector field.
    Cottaar M; Bastiani M; Boddu N; Glasser MF; Haber S; van Essen DC; Sotiropoulos SN; Jbabdi S
    Neuroimage; 2021 Feb; 227():117693. PubMed ID: 33385545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity gradients on tractography data: Pipeline and example applications.
    Blazquez Freches G; Haak KV; Beckmann CF; Mars RB
    Hum Brain Mapp; 2021 Dec; 42(18):5827-5845. PubMed ID: 34559432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain connections derived from diffusion MRI tractography can be highly anatomically accurate-if we know where white matter pathways start, where they end, and where they do not go.
    Schilling KG; Petit L; Rheault F; Remedios S; Pierpaoli C; Anderson AW; Landman BA; Descoteaux M
    Brain Struct Funct; 2020 Nov; 225(8):2387-2402. PubMed ID: 32816112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants.
    Akazawa K; Chang L; Yamakawa R; Hayama S; Buchthal S; Alicata D; Andres T; Castillo D; Oishi K; Skranes J; Ernst T; Oishi K
    Neuroimage; 2016 Mar; 128():167-179. PubMed ID: 26712341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional connectivity mapping of the human corpus callosum organization with white-matter functional networks.
    Wang P; Wang J; Tang Q; Alvarez TL; Wang Z; Kung YC; Lin CP; Chen H; Meng C; Biswal BB
    Neuroimage; 2021 Feb; 227():117642. PubMed ID: 33338619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data.
    Guo F; Leemans A; Viergever MA; Dell'Acqua F; De Luca A
    Neuroimage; 2020 Sep; 218():116948. PubMed ID: 32428705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent white matter bundles and grey matter networks using independent component analysis.
    O'Muircheartaigh J; Jbabdi S
    Neuroimage; 2018 Apr; 170():296-306. PubMed ID: 28514668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hierarchical method for whole-brain connectivity-based parcellation.
    Moreno-Dominguez D; Anwander A; Knösche TR
    Hum Brain Mapp; 2014 Oct; 35(10):5000-25. PubMed ID: 24740833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.
    Chu SH; Parhi KK; Lenglet C
    Sci Rep; 2018 Mar; 8(1):4741. PubMed ID: 29549287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data.
    Chen H; Liu T; Zhao Y; Zhang T; Li Y; Li M; Zhang H; Kuang H; Guo L; Tsien JZ; Liu T
    Neuroimage; 2015 Jul; 115():202-13. PubMed ID: 25953631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the cortical connectivity in the macaque brain: A comparison of diffusion tractography and histological tracing data.
    Girard G; Caminiti R; Battaglia-Mayer A; St-Onge E; Ambrosen KS; Eskildsen SF; Krug K; Dyrby TB; Descoteaux M; Thiran JP; Innocenti GM
    Neuroimage; 2020 Nov; 221():117201. PubMed ID: 32739552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth.
    Pandit AS; Robinson E; Aljabar P; Ball G; Gousias IS; Wang Z; Hajnal JV; Rueckert D; Counsell SJ; Montana G; Edwards AD
    Cereb Cortex; 2014 Sep; 24(9):2324-33. PubMed ID: 23547135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential.
    Yeh CH; Smith RE; Dhollander T; Calamante F; Connelly A
    Neuroimage; 2019 Oct; 199():160-171. PubMed ID: 31082471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping population-based structural connectomes.
    Zhang Z; Descoteaux M; Zhang J; Girard G; Chamberland M; Dunson D; Srivastava A; Zhu H
    Neuroimage; 2018 May; 172():130-145. PubMed ID: 29355769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superficial white matter analysis: An efficient point-cloud-based deep learning framework with supervised contrastive learning for consistent tractography parcellation across populations and dMRI acquisitions.
    Xue T; Zhang F; Zhang C; Chen Y; Song Y; Golby AJ; Makris N; Rathi Y; Cai W; O'Donnell LJ
    Med Image Anal; 2023 Apr; 85():102759. PubMed ID: 36706638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework for multi-component analysis of diffusion MRI data over the neonatal period.
    Pietsch M; Christiaens D; Hutter J; Cordero-Grande L; Price AN; Hughes E; Edwards AD; Hajnal JV; Counsell SJ; Tournier JD
    Neuroimage; 2019 Feb; 186():321-337. PubMed ID: 30391562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography?
    Sarwar T; Ramamohanarao K; Zalesky A
    Magn Reson Med; 2019 Feb; 81(2):1368-1384. PubMed ID: 30303550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced structural connectivity within a prefrontal-motor-subcortical network in amyotrophic lateral sclerosis.
    Buchanan CR; Pettit LD; Storkey AJ; Abrahams S; Bastin ME
    J Magn Reson Imaging; 2015 May; 41(5):1342-52. PubMed ID: 25044733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.