These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1016 related articles for article (PubMed ID: 32818626)
1. Deep computational pathology in breast cancer. Duggento A; Conti A; Mauriello A; Guerrisi M; Toschi N Semin Cancer Biol; 2021 Jul; 72():226-237. PubMed ID: 32818626 [TBL] [Abstract][Full Text] [Related]
2. Pathology Image Analysis Using Segmentation Deep Learning Algorithms. Wang S; Yang DM; Rong R; Zhan X; Xiao G Am J Pathol; 2019 Sep; 189(9):1686-1698. PubMed ID: 31199919 [TBL] [Abstract][Full Text] [Related]
3. Deep learning approaches for breast cancer detection in histopathology images: A review. Priya C V L; V G B; B R V; Ramachandran S Cancer Biomark; 2024; 40(1):1-25. PubMed ID: 38517775 [TBL] [Abstract][Full Text] [Related]
4. Equipping computational pathology systems with artifact processing pipelines: a showcase for computation and performance trade-offs. Kanwal N; Khoraminia F; Kiraz U; Mosquera-Zamudio A; Monteagudo C; Janssen EAM; Zuiverloon TCM; Rong C; Engan K BMC Med Inform Decis Mak; 2024 Oct; 24(1):288. PubMed ID: 39375719 [TBL] [Abstract][Full Text] [Related]
5. Deep learning for colon cancer histopathological images analysis. Ben Hamida A; Devanne M; Weber J; Truntzer C; Derangère V; Ghiringhelli F; Forestier G; Wemmert C Comput Biol Med; 2021 Sep; 136():104730. PubMed ID: 34375901 [TBL] [Abstract][Full Text] [Related]
6. Multimodal representations of biomedical knowledge from limited training whole slide images and reports using deep learning. Marini N; Marchesin S; Wodzinski M; Caputo A; Podareanu D; Guevara BC; Boytcheva S; Vatrano S; Fraggetta F; Ciompi F; Silvello G; Müller H; Atzori M Med Image Anal; 2024 Oct; 97():103303. PubMed ID: 39154617 [TBL] [Abstract][Full Text] [Related]
7. Semantic Integrative Digital Pathology: Insights into Microsemiological Semantics and Image Analysis Scalability. Racoceanu D; Capron F Pathobiology; 2016; 83(2-3):148-55. PubMed ID: 27100713 [TBL] [Abstract][Full Text] [Related]
8. Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis. Kosaraju SC; Hao J; Koh HM; Kang M Methods; 2020 Jul; 179():3-13. PubMed ID: 32442672 [TBL] [Abstract][Full Text] [Related]
9. Recent advances and clinical applications of deep learning in medical image analysis. Chen X; Wang X; Zhang K; Fung KM; Thai TC; Moore K; Mannel RS; Liu H; Zheng B; Qiu Y Med Image Anal; 2022 Jul; 79():102444. PubMed ID: 35472844 [TBL] [Abstract][Full Text] [Related]
10. Operational greenhouse-gas emissions of deep learning in digital pathology: a modelling study. Vafaei Sadr A; Bülow R; von Stillfried S; Schmitz NEJ; Pilva P; Hölscher DL; Ha PP; Schweiker M; Boor P Lancet Digit Health; 2024 Jan; 6(1):e58-e69. PubMed ID: 37996339 [TBL] [Abstract][Full Text] [Related]
11. Developing a low-cost, open-source, locally manufactured workstation and computational pipeline for automated histopathology evaluation using deep learning. Choudhury D; Dolezal JM; Dyer E; Kochanny S; Ramesh S; Howard FM; Margalus JR; Schroeder A; Schulte J; Garassino MC; Kather JN; Pearson AT EBioMedicine; 2024 Sep; 107():105276. PubMed ID: 39197222 [TBL] [Abstract][Full Text] [Related]
12. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Janowczyk A; Madabhushi A J Pathol Inform; 2016; 7():29. PubMed ID: 27563488 [TBL] [Abstract][Full Text] [Related]
13. Automated curation of large-scale cancer histopathology image datasets using deep learning. Hilgers L; Ghaffari Laleh N; West NP; Westwood A; Hewitt KJ; Quirke P; Grabsch HI; Carrero ZI; Matthaei E; Loeffler CML; Brinker TJ; Yuan T; Brenner H; Brobeil A; Hoffmeister M; Kather JN Histopathology; 2024 Jun; 84(7):1139-1153. PubMed ID: 38409878 [TBL] [Abstract][Full Text] [Related]
14. Recent developments in cervical cancer diagnosis using deep learning on whole slide images: An Overview of models, techniques, challenges and future directions. Sambyal D; Sarwar A Micron; 2023 Oct; 173():103520. PubMed ID: 37556898 [TBL] [Abstract][Full Text] [Related]
15. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. Hossain MB; Shinde RK; Oh S; Kwon KC; Kim N Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339469 [TBL] [Abstract][Full Text] [Related]
16. Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis. Wang X; Chen H; Gan C; Lin H; Dou Q; Tsougenis E; Huang Q; Cai M; Heng PA IEEE Trans Cybern; 2020 Sep; 50(9):3950-3962. PubMed ID: 31484154 [TBL] [Abstract][Full Text] [Related]
17. RegWSI: Whole slide image registration using combined deep feature- and intensity-based methods: Winner of the ACROBAT 2023 challenge. Wodzinski M; Marini N; Atzori M; Müller H Comput Methods Programs Biomed; 2024 Jun; 250():108187. PubMed ID: 38657383 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning in Microscopy Image Analysis: A Survey. Fuyong Xing ; Yuanpu Xie ; Hai Su ; Fujun Liu ; Lin Yang IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4550-4568. PubMed ID: 29989994 [TBL] [Abstract][Full Text] [Related]
19. Image analysis and machine learning in digital pathology: Challenges and opportunities. Madabhushi A; Lee G Med Image Anal; 2016 Oct; 33():170-175. PubMed ID: 27423409 [TBL] [Abstract][Full Text] [Related]
20. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]