These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32818679)

  • 21. From doping to composites: zirconia (ZrO
    Qureshi S; Gregory DH; Tahir AA; Ahmed S
    RSC Adv; 2023 Nov; 13(49):34798-34807. PubMed ID: 38035232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An
    Kang K; Zhang H; Kim JH; Byun WJ; Lee JS
    Nanoscale Adv; 2022 Mar; 4(6):1659-1667. PubMed ID: 36134374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NiFe-LDH-Decorated Ti-Doped Hematite Photoanode for Enhancing Solar Water-Splitting Efficiency.
    Bai S; Jia S; Zhao Y; Tang P; Feng Y; Luo R; Li D; Chen A
    Inorg Chem; 2023 Sep; 62(37):15039-15049. PubMed ID: 37652045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Organic Framework-Derived p-Cu
    Wu J; Huang P; Fan H; Wang G; Liu W
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30304-30312. PubMed ID: 32543170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts.
    Wang T; Long X; Wei S; Wang P; Wang C; Jin J; Hu G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49705-49712. PubMed ID: 33104336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerium-Doped Iron Oxide Nanorod Arrays for Photoelectrochemical Water Splitting.
    Zhao HP; Zhu ML; Shi HY; Zhou QQ; Chen R; Lin SW; Tong MH; Ji MH; Jiang X; Liao CX; Chen YX; Lu CZ
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation.
    Chong R; Wang Z; Fan M; Wang L; Chang Z; Zhang L
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):217-226. PubMed ID: 36152578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-doping in the bulk and the surface to ameliorate the hematite anode for photoelectrochemical water oxidation.
    Wang T; Gao L; Wang P; Long X; Chai H; Li F; Jin J
    J Colloid Interface Sci; 2022 Oct; 624():60-69. PubMed ID: 35660911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting.
    Tamirat AG; Dubale AA; Su WN; Chen HM; Hwang BJ
    Phys Chem Chem Phys; 2017 Aug; 19(31):20881-20890. PubMed ID: 28745359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring surface states by sequential doping of Ti and Mg for kinetically enhanced hematite photoanode.
    Gong L; Xie J; Liang X; Xiong J; Yi S; Zhang X; Li CM
    J Colloid Interface Sci; 2019 Apr; 542():441-450. PubMed ID: 30772507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe
    Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.