These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A differential scanning calorimetric study of the thermal unfolding of apo- and holo-cytochrome b562. Robinson CR; Liu Y; O'Brien R; Sligar SG; Sturtevant JM Protein Sci; 1998 Apr; 7(4):961-5. PubMed ID: 9568902 [TBL] [Abstract][Full Text] [Related]
3. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562. Garcia P; Bruix M; Rico M; Ciofi-Baffoni S; Banci L; Ramachandra Shastry MC; Roder H; de Lumley Woodyear T; Johnson CM; Fersht AR; Barker PD J Mol Biol; 2005 Feb; 346(1):331-44. PubMed ID: 15663948 [TBL] [Abstract][Full Text] [Related]
4. A cytochrome b562 variant with a c-type cytochrome CXXCH heme-binding motif as a probe of the Escherichia coli cytochrome c maturation system. Allen JW; Barker PD; Ferguson SJ J Biol Chem; 2003 Dec; 278(52):52075-83. PubMed ID: 14534316 [TBL] [Abstract][Full Text] [Related]
5. Effect of heme binding on the structure and stability of Escherichia coli apocytochrome b562. Feng YQ; Sligar SG Biochemistry; 1991 Oct; 30(42):10150-5. PubMed ID: 1931945 [TBL] [Abstract][Full Text] [Related]
9. Energetics of heme binding to native and denatured states of cytochrome b562. Robinson CR; Liu Y; Thomson JA; Sturtevant JM; Sligar SG Biochemistry; 1997 Dec; 36(51):16141-6. PubMed ID: 9405047 [TBL] [Abstract][Full Text] [Related]
10. Local dynamics and stability of apocytochrome b562 examined by hydrogen exchange. Fuentes EJ; Wand AJ Biochemistry; 1998 Mar; 37(11):3687-98. PubMed ID: 9521687 [TBL] [Abstract][Full Text] [Related]
11. Conversion of cytochrome b562 to c-type cytochromes. Barker PD; Nerou EP; Freund SM; Fearnley IM Biochemistry; 1995 Nov; 34(46):15191-203. PubMed ID: 7578134 [TBL] [Abstract][Full Text] [Related]
12. Stability and folding kinetics of structurally characterized cytochrome c-b562. Faraone-Mennella J; Tezcan FA; Gray HB; Winkler JR Biochemistry; 2006 Sep; 45(35):10504-11. PubMed ID: 16939202 [TBL] [Abstract][Full Text] [Related]
13. Refined structure of cytochrome b562 from Escherichia coli at 1.4 A resolution. Hamada K; Bethge PH; Mathews FS J Mol Biol; 1995 Apr; 247(5):947-62. PubMed ID: 7723042 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulations of apocytochrome b562--the highly ordered limit of molten globules. Laidig KE; Daggett V Fold Des; 1996; 1(5):335-46. PubMed ID: 9080180 [TBL] [Abstract][Full Text] [Related]
15. Design and folding of a multidomain protein. Zhou Z; Feng H; Zhou H; Zhou Y; Bai Y Biochemistry; 2005 Sep; 44(36):12107-12. PubMed ID: 16142908 [TBL] [Abstract][Full Text] [Related]
16. Cytochrome b562 folding triggered by electron transfer: approaching the speed limit for formation of a four-helix-bundle protein. Wittung-Stafshede P; Lee JC; Winkler JR; Gray HB Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6587-90. PubMed ID: 10359755 [TBL] [Abstract][Full Text] [Related]
17. Detection and structure determination of an equilibrium unfolding intermediate of Rd-apocytochrome b562: native fold with non-native hydrophobic interactions. Feng H; Vu ND; Bai Y J Mol Biol; 2004 Nov; 343(5):1477-85. PubMed ID: 15491625 [TBL] [Abstract][Full Text] [Related]
18. Differences in thermal stability between reduced and oxidized cytochrome b562 from Escherichia coli. Fisher MT Biochemistry; 1991 Oct; 30(41):10012-8. PubMed ID: 1911766 [TBL] [Abstract][Full Text] [Related]