These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32818723)

  • 1. On the governing fragmentation mechanism of primary intermetallics by induced cavitation.
    Priyadarshi A; Khavari M; Subroto T; Conte M; Prentice P; Pericleous K; Eskin D; Durodola J; Tzanakis I
    Ultrason Sonochem; 2021 Jan; 70():105260. PubMed ID: 32818723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics under ultrasonic cavitation in water.
    Priyadarshi A; Khavari M; Bin Shahrani S; Subroto T; Yusuf LA; Conte M; Prentice P; Pericleous K; Eskin D; Tzanakis I
    Ultrason Sonochem; 2021 Dec; 80():105820. PubMed ID: 34763212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.
    Wang F; Tzanakis I; Eskin D; Mi J; Connolley T
    Ultrason Sonochem; 2017 Nov; 39():66-76. PubMed ID: 28732991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys.
    Zhang L; Eskin DG; Katgerman L
    J Mater Sci; 2011; 46(15):5252-5259. PubMed ID: 36039104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device.
    Choi MJ; Kang G; Huh JS
    Biomed Eng Lett; 2017 May; 7(2):143-151. PubMed ID: 30603161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced cavitation bubbles and shock waves in water near a concave surface.
    Požar T; Agrež V; Petkovšek R
    Ultrason Sonochem; 2021 May; 73():105456. PubMed ID: 33517094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.
    Vlaisavljevich E; Maxwell A; Warnez M; Johnsen E; Cain CA; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):341-52. PubMed ID: 24474139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.
    Lukač N; Jezeršek M
    Lasers Med Sci; 2018 May; 33(4):823-833. PubMed ID: 29327088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation on the characteristics of the shock wave emitted by the cavitation bubble near the air bubble.
    Zhu J; Zhang M; Tan Z; Han L; Huang B
    Ultrason Sonochem; 2024 Mar; 104():106846. PubMed ID: 38492554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical investigation of acoustic pressures in different liquids.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D
    Ultrason Sonochem; 2018 Apr; 42():411-421. PubMed ID: 29429686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation and analysis of ultrasonic capillary effect in molten aluminium.
    Tzanakis I; Xu WW; Eskin DG; Lee PD; Kotsovinos N
    Ultrason Sonochem; 2015 Nov; 27():72-80. PubMed ID: 26186822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental studies of ultrasonic melt processing.
    Eskin DG; Tzanakis I; Wang F; Lebon GSB; Subroto T; Pericleous K; Mi J
    Ultrason Sonochem; 2019 Apr; 52():455-467. PubMed ID: 30594518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.