These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32818732)

  • 1. Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences.
    Li S; Huang T; Du P; Liu W; Hu J
    Water Res; 2020 Oct; 185():116286. PubMed ID: 32818732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation products formation of ciprofloxacin in UVA/LED and UVA/LED/TiO
    Li S; Hu J
    Water Res; 2018 Apr; 132():320-330. PubMed ID: 29339304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin.
    Wei X; Chen J; Xie Q; Zhang S; Ge L; Qiao X
    Environ Sci Technol; 2013 May; 47(9):4284-90. PubMed ID: 23548166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.
    Salma A; Thoröe-Boveleth S; Schmidt TC; Tuerk J
    J Hazard Mater; 2016 Aug; 313():49-59. PubMed ID: 27054664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices.
    Jiang C; Ji Y; Shi Y; Chen J; Cai T
    Water Res; 2016 Dec; 106():507-517. PubMed ID: 27770727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: Degradation mechanisms and iron chelation.
    Giri AS; Golder AK
    J Environ Sci (China); 2019 Jun; 80():82-92. PubMed ID: 30952355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the synergistic effect between radical and non-radical species of sulfur-doped carbon nitride for ciprofloxacin removal: Based on density functional theory study.
    Zeng H; Zhou Z; Li W; Li L; Tang R; Xiong S; Gong D; Huang Y; Bai L; Deng Y
    Sci Total Environ; 2024 Mar; 915():170191. PubMed ID: 38244633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced ozonation of ciprofloxacin in the presence of bromide: Kinetics, products, pathways, and toxicity.
    Lu P; Lin K; Gan J
    Water Res; 2020 Sep; 183():116105. PubMed ID: 32650298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-dependent degradation of ciprofloxacin in a membrane anodic Fenton system.
    Xiao X; Zeng X; Lemley AT
    J Agric Food Chem; 2010 Sep; 58(18):10169-75. PubMed ID: 20726585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of intermediate by-products and mechanism of the photocatalytic degradation of ciprofloxacin in water using graphitized carbon nitride nanosheets.
    Jiménez-Salcedo M; Monge M; Tena MT
    Chemosphere; 2020 May; 247():125910. PubMed ID: 32069715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical degradation of the antibiotic ciprofloxacin in a flow reactor using distinct BDD anodes: Reaction kinetics, identification and toxicity of the degradation products.
    Wachter N; Aquino JM; Denadai M; Barreiro JC; Silva AJ; Cass QB; Bocchi N; Rocha-Filho RC
    Chemosphere; 2019 Nov; 234():461-470. PubMed ID: 31228848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli.
    Ye JS; Liu J; Ou HS; Wang LL
    Chemosphere; 2016 Dec; 165():311-319. PubMed ID: 27664520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of chemical speciation on photochemical transformation of three fluoroquinolones (FQs) in water: Kinetics, mechanism, and toxicity of photolysis products.
    Zhang Z; Xie X; Yu Z; Cheng H
    Water Res; 2019 Jan; 148():19-29. PubMed ID: 30343195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anodic oxidation of ciprofloxacin using different graphite felt anodes: Kinetics and degradation pathways.
    Chen Z; Lai W; Xu Y; Xie G; Hou W; Zhanchang P; Kuang C; Li Y
    J Hazard Mater; 2021 Mar; 405():124262. PubMed ID: 33213981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways.
    Sayed M; Ismail M; Khan S; Tabassum S; Khan HM
    Environ Technol; 2016; 37(5):590-602. PubMed ID: 26208491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes.
    Li H; Wu W; Hao X; Wang S; You M; Han X; Zhao Q; Xing B
    Environ Pollut; 2018 Dec; 243(Pt A):206-217. PubMed ID: 30172990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed discharge plasma induced WO
    Guo H; Jiang N; Wang H; Shang K; Lu N; Li J; Wu Y
    Chemosphere; 2019 Sep; 230():190-200. PubMed ID: 31103865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical degradation of ciprofloxacin in UV and UV/H₂O₂ process: kinetics, parameters, and products.
    Guo HG; Gao NY; Chu WH; Li L; Zhang YJ; Gu JS; Gu YL
    Environ Sci Pollut Res Int; 2013 May; 20(5):3202-13. PubMed ID: 23054793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes.
    Milh H; Yu X; Cabooter D; Dewil R
    Sci Total Environ; 2021 Apr; 764():144510. PubMed ID: 33387769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.
    Ji Y; Ferronato C; Salvador A; Yang X; Chovelon JM
    Sci Total Environ; 2014 Feb; 472():800-8. PubMed ID: 24342085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.