BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32818864)

  • 1. Evaluation of the effects of aldehydes on association colloid properties and oxidative stability in bulk oils.
    Jo S; Lee J
    Food Chem; 2021 Feb; 338():127778. PubMed ID: 32818864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water content, critical micelle concentration of phospholipids and formation of association colloids as factors influencing autoxidation of rapeseed oil.
    Bąkowska E; Siger A; Rudzińska M; Dwiecki K
    J Sci Food Agric; 2022 Jan; 102(2):488-495. PubMed ID: 34138466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the role of iron in the promotion of lipid oxidation in bulk oils containing reverse micelles.
    Chen B; Panya A; McClements DJ; Decker EA
    J Agric Food Chem; 2012 Apr; 60(13):3524-32. PubMed ID: 22404842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The critical micelle concentration of lecithin in bulk oils and medium chain triacylglycerol is influenced by moisture content and total polar materials.
    Kim J; Kim MJ; Lee J
    Food Chem; 2018 Sep; 261():194-200. PubMed ID: 29739582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dioleylphosphatidylcholine increases the antioxidant properties of ascorbyl palmitate in bulk oils compared to other hydrophilic and lipophilic antioxidants.
    Kim H; Woo Y; Choi H; Kim MJ; Lee J
    Food Chem; 2021 Jul; 349():129082. PubMed ID: 33548885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Furans Formation and Volatile Aldehydes Profiles of Four Different Vegetable Oils During Thermal Oxidation.
    Wang Y; Zhu M; Mei J; Luo S; Leng T; Chen Y; Nie S; Xie M
    J Food Sci; 2019 Jul; 84(7):1966-1978. PubMed ID: 31206695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical structures in soybean oil and their impact on lipid oxidation.
    Chen B; Han A; McClements DJ; Decker EA
    J Agric Food Chem; 2010 Nov; 58(22):11993-9. PubMed ID: 20964436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Extracts Inhibit the Formation of Hydroperoxides and Help Maintain Vitamin E Levels and Omega-3 Fatty Acids During High Temperature Processing and Storage of Hempseed and Soybean Oils.
    Kitts DD; Singh A; Fathordoobady F; Doi B; Pratap Singh A
    J Food Sci; 2019 Nov; 84(11):3147-3155. PubMed ID: 31599978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of time, surface-to-volume ratio, and heating process (continuous or intermittent) on the emission rates of selected carbonyl compounds during thermal oxidation of palm and soybean oils.
    da Silva TO; Pereira PA
    J Agric Food Chem; 2008 May; 56(9):3129-35. PubMed ID: 18422332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of reverse micelles on lipid oxidation in bulk oils: impact of phospholipids on antioxidant activity of α-tocopherol and Trolox.
    Chen B; Han A; Laguerre M; McClements DJ; Decker EA
    Food Funct; 2011 Jun; 2(6):302-9. PubMed ID: 21779568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil.
    Wang X; Chen Y; McClements DJ; Meng C; Zhang M; Chen H; Deng Q
    Adv Colloid Interface Sci; 2024 Mar; 325():103117. PubMed ID: 38394718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects on the flavor and oxidative stability of stripped soybean and sunflower oils with added pure tocopherols.
    Warner K
    J Agric Food Chem; 2005 Dec; 53(26):9906-10. PubMed ID: 16366673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel approach to evaluate the oxidation state of vegetable oils using characteristic oxidation indicators.
    Cao J; Deng L; Zhu XM; Fan Y; Hu JN; Li J; Deng ZY
    J Agric Food Chem; 2014 Dec; 62(52):12545-52. PubMed ID: 25487776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial behavior of gallic acid and its alkyl esters in stripped soybean oil in combination with monoacylglycerol and phospholipid.
    Delfanian M; Sahari MA; Barzegar M; Ahmadi Gavlighi H; Barba FJ
    Food Chem; 2023 Jul; 413():135618. PubMed ID: 36753786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of oxidative stability in bulk oils using dielectric constant changes.
    Woo Y; Kim MJ; Lee J
    Food Chem; 2019 May; 279():216-222. PubMed ID: 30611483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex role of monoacylglycerols in the oxidation of vegetable oils: different behaviors of soybean monoacylglycerols in different oils.
    Paradiso VM; Caponio F; Bruno G; Pasqualone A; Summo C; Gomes T
    J Agric Food Chem; 2014 Nov; 62(44):10776-82. PubMed ID: 25310182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative oxidative stability of diacylglycerol and triacylglycerol oils.
    Qi JF; Wang XY; Shin JA; Lee YH; Jang YS; Lee JH; Hong ST; Lee KT
    J Food Sci; 2015 Mar; 80(3):C510-4. PubMed ID: 25678328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles.
    Villeneuve P; Bourlieu-Lacanal C; Durand E; Lecomte J; McClements DJ; Decker EA
    Crit Rev Food Sci Nutr; 2023; 63(20):4687-4727. PubMed ID: 34839769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in markers of lipid oxidation and thermal treatment in feed-grade fats and oils.
    Winkler-Moser JK; Hwang HS; Kerr BJ
    J Sci Food Agric; 2020 Jun; 100(8):3328-3340. PubMed ID: 32112406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stability of docosahexaenoic acid-containing oils in the form of phospholipids, triacylglycerols, and ethyl esters.
    Song JH; Inoue Y; Miyazawa T
    Biosci Biotechnol Biochem; 1997 Dec; 61(12):2085-8. PubMed ID: 9438988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.