These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32818886)

  • 21. Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources.
    Muñoz I; Fernández-Alba AR
    Water Res; 2008 Feb; 42(3):801-11. PubMed ID: 17826817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Economics and Energy Consumption of Brackish Water Reverse Osmosis Desalination: Innovations and Impacts of Feedwater Quality.
    Pearson JL; Michael PR; Ghaffour N; Missimer TM
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a multistage hybrid desalination process for brine management and maximum water recovery.
    Kadi KE; Janajreh I; Abedrabbo S; Ali MI
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):17565-17577. PubMed ID: 36640235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.
    Kim B; Kwak R; Kwon HJ; Pham VS; Kim M; Al-Anzi B; Lim G; Han J
    Sci Rep; 2016 Aug; 6():31850. PubMed ID: 27545955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seawater quality and microbial communities at a desalination plant marine outfall. A field study at the Israeli Mediterranean coast.
    Drami D; Yacobi YZ; Stambler N; Kress N
    Water Res; 2011 Nov; 45(17):5449-62. PubMed ID: 21889185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.
    Vane LM
    J Chem Technol Biotechnol; 2017 Mar; 92(10):2506-2518. PubMed ID: 29225395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.
    Shaffer DL; Arias Chavez LH; Ben-Sasson M; Romero-Vargas Castrillón S; Yip NY; Elimelech M
    Environ Sci Technol; 2013 Sep; 47(17):9569-83. PubMed ID: 23885720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First large-scale ecological impact study of desalination outfall reveals trade-offs in effects of hypersalinity and hydrodynamics.
    Clark GF; Knott NA; Miller BM; Kelaher BP; Coleman MA; Ushiama S; Johnston EL
    Water Res; 2018 Nov; 145():757-768. PubMed ID: 30218950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Life Cycle Assessment of Hybrid Nanofiltration Desalination Plants in the Persian Gulf.
    Bordbar B; Khosravi A; Ahmadi Orkomi A; Peydayesh M
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation.
    Xie Z; Ng D; Hoang M; Zhang J; Gray S
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30177601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid renewable energy/hybrid desalination potentials for remote areas: selected cases studied in Egypt.
    El-Hady B Kashyout A; Hassan A; Hassan G; El-Banna Fath H; El-Wahab Kassem A; Elshimy H; RanjanVepa ; Shaheed MH
    RSC Adv; 2021 Apr; 11(22):13201-13219. PubMed ID: 35423875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging desalination technologies for water treatment: a critical review.
    Subramani A; Jacangelo JG
    Water Res; 2015 May; 75():164-87. PubMed ID: 25770440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodesalination-On harnessing the potential of nature's desalination processes.
    Taheri R; Razmjou A; Szekely G; Hou J; Ghezelbash GR
    Bioinspir Biomim; 2016 Jul; 11(4):041001. PubMed ID: 27387607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process.
    Alsarayreh AA; Al-Obaidi MA; Ruiz-García A; Patel R; Mujtaba IM
    Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and Structural Optimization of MSF-RO Desalination System.
    He L; Jiang A; Huang Q; Zhao Y; Li C; Wang J; Xia Y
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental impact of seawater desalination plants.
    Al-Mutaz IS
    Environ Monit Assess; 1991 Jan; 16(1):75-84. PubMed ID: 24241776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination.
    Park K; Kim DY; Jang YH; Kim MG; Yang DR; Hong S
    Water Res; 2020 Mar; 171():115426. PubMed ID: 31887548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced Technologies for Stabilization and High Performance of Seawater RO Membrane Desalination Plants.
    Takabatake H; Taniguchi M; Kurihara M
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33669252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A pilot study of spiral-wound air gap membrane distillation process and its energy efficiency analysis.
    Lee CK; Park C; Woo YC; Choi JS; Kim JO
    Chemosphere; 2020 Jan; 239():124696. PubMed ID: 31726529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.