BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32818927)

  • 1. Potential toxicity mechanism of MoS
    Meng Y; Liu R; Zhu M; Zhai H; Ren C
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111317. PubMed ID: 32818927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structures of the YAP65 WW domain and the variant L30 K in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope.
    Pires JR; Taha-Nejad F; Toepert F; Ast T; Hoffmüller U; Schneider-Mergener J; Kühne R; Macias MJ; Oschkinat H
    J Mol Biol; 2001 Dec; 314(5):1147-56. PubMed ID: 11743730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide.
    Macias MJ; Hyvönen M; Baraldi E; Schultz J; Sudol M; Saraste M; Oschkinat H
    Nature; 1996 Aug; 382(6592):646-9. PubMed ID: 8757138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive inhibition of metallofullerenol Gd@C(82)(OH)(22) on WW domain: implication on signal transduction pathway.
    Kang SG; Huynh T; Zhou R
    Sci Rep; 2012; 2():957. PubMed ID: 23233876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands.
    Bedford MT; Chan DC; Leder P
    EMBO J; 1997 May; 16(9):2376-83. PubMed ID: 9171351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands.
    Chen HI; Einbond A; Kwak SJ; Linn H; Koepf E; Peterson S; Kelly JW; Sudol M
    J Biol Chem; 1997 Jul; 272(27):17070-7. PubMed ID: 9202023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An autonomously folding beta-hairpin derived from the human YAP65 WW domain: attempts to define a minimum ligand-binding motif.
    Espinosa JF; Syud FA; Gellman SH
    Biopolymers; 2005; 80(2-3):303-11. PubMed ID: 15800888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules.
    Chen HI; Sudol M
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7819-23. PubMed ID: 7644498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.
    Shi B; Zuo G; Xiu P; Zhou R
    J Phys Chem B; 2013 Apr; 117(13):3541-7. PubMed ID: 23477344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.
    Wiesner S; Stier G; Sattler M; Macias MJ
    J Mol Biol; 2002 Dec; 324(4):807-22. PubMed ID: 12460579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical studies and modelling indicate the binding preference of TAZ WW domain for LATS1 PPxY motif.
    Verma A; Lin F; Tan YC; Hidayat MN; Jobichen C; Fan H; Sivaraman J
    Biochem Biophys Res Commun; 2018 Jul; 502(3):307-312. PubMed ID: 29787761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tungsten Oxide Nanodots Exhibit Mild Interactions with WW and SH3 Modular Protein Domains.
    Song W; Jing Z; Meng L; Zhou R
    ACS Omega; 2020 May; 5(19):11005-11012. PubMed ID: 32455221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production in Pichia pastoris of complementary protein-based polymers with heterodimer-forming WW and PPxY domains.
    Domeradzka NE; Werten MW; de Vries R; de Wolf FA
    Microb Cell Fact; 2016 Jun; 15(1):105. PubMed ID: 27286861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A map of WW domain family interactions.
    Hu H; Columbus J; Zhang Y; Wu D; Lian L; Yang S; Goodwin J; Luczak C; Carter M; Chen L; James M; Davis R; Sudol M; Rodwell J; Herrero JJ
    Proteomics; 2004 Mar; 4(3):643-55. PubMed ID: 14997488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of a new binding motif and a novel binding mode in group 2 WW domains.
    Ramirez-Espain X; Ruiz L; Martin-Malpartida P; Oschkinat H; Macias MJ
    J Mol Biol; 2007 Nov; 373(5):1255-68. PubMed ID: 17915251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands.
    Macias MJ; Wiesner S; Sudol M
    FEBS Lett; 2002 Feb; 513(1):30-7. PubMed ID: 11911877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes.
    Meng G; Dai F; Tong X; Li N; Ding X; Song J; Lu C
    Mol Genet Genomics; 2015 Jun; 290(3):807-24. PubMed ID: 25424044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional/one-dimensional molybdenum sulfide (MoS
    Sun J; Yang S; Liang Z; Liu X; Qiu P; Cui H; Tian J
    J Colloid Interface Sci; 2020 May; 567():300-307. PubMed ID: 32065904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and dynamics of tandem WW domains in a negative regulator of notch signaling, Suppressor of deltex.
    Fedoroff OY; Townson SA; Golovanov AP; Baron M; Avis JM
    J Biol Chem; 2004 Aug; 279(33):34991-5000. PubMed ID: 15173166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural influence of proteins upon adsorption to MoS
    Gu Z; De Luna P; Yang Z; Zhou R
    Phys Chem Chem Phys; 2017 Jan; 19(4):3039-3045. PubMed ID: 28079199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.