These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32818927)

  • 21. Bio-mimicking of proline-rich motif applied to carbon nanotube reveals unexpected subtleties underlying nanoparticle functionalization.
    Zhang Y; Jimenez-Cruz CA; Wang J; Zhou B; Yang Z; Zhou R
    Sci Rep; 2014 Nov; 4():7229. PubMed ID: 25427563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of FBP11 WW1-PL ligand complex reveals the mechanism of proline-rich ligand recognition by group II/III WW domains.
    Kato Y; Miyakawa T; Kurita J; Tanokura M
    J Biol Chem; 2006 Dec; 281(52):40321-9. PubMed ID: 17065151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsic disorder and amino acid specificity modulate binding of the WW2 domain in kidney and brain protein (KIBRA) to synaptopodin.
    Kwok E; Rodriguez DJ; Kremerskothen J; Nyarko A
    J Biol Chem; 2019 Nov; 294(46):17383-17394. PubMed ID: 31597702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a novel protein-binding module--the WW domain.
    Sudol M; Chen HI; Bougeret C; Einbond A; Bork P
    FEBS Lett; 1995 Aug; 369(1):67-71. PubMed ID: 7641887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards prediction of cognate complexes between the WW domain and proline-rich ligands.
    Einbond A; Sudol M
    FEBS Lett; 1996 Apr; 384(1):1-8. PubMed ID: 8797792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proline Restricts Loop I Conformation of the High Affinity WW Domain from Human Nedd4-1 to a Ligand Binding-Competent Type I β-Turn.
    Schulte M; Panwalkar V; Freischem S; Willbold D; Dingley AJ
    J Phys Chem B; 2018 Apr; 122(15):4219-4230. PubMed ID: 29595969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of substrate binding of the WW domains in human WWP2 protein.
    Jiang J; Wang N; Jiang Y; Tan H; Zheng J; Chen G; Jia Z
    FEBS Lett; 2015 Jul; 589(15):1935-42. PubMed ID: 25999310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of the beta-sheet of the WW domain: A molecular dynamics simulation study.
    Ibragimova GT; Wade RC
    Biophys J; 1999 Oct; 77(4):2191-8. PubMed ID: 10512838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metallofullerenol Gd@C₈₂(OH)₂₂ distracts the proline-rich-motif from putative binding on the SH3 domain.
    Kang SG; Huynh T; Zhou R
    Nanoscale; 2013 Apr; 5(7):2703-12. PubMed ID: 23423582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Common mechanism of ligand recognition by group II/III WW domains: redefining their functional classification.
    Kato Y; Nagata K; Takahashi M; Lian L; Herrero JJ; Sudol M; Tanokura M
    J Biol Chem; 2004 Jul; 279(30):31833-41. PubMed ID: 15133021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product.
    Sudol M
    Oncogene; 1994 Aug; 9(8):2145-52. PubMed ID: 8035999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR studies of tandem WW domains of Nedd4 in complex with a PY motif-containing region of the epithelial sodium channel.
    Kanelis V; Farrow NA; Kay LE; Rotin D; Forman-Kay JD
    Biochem Cell Biol; 1998; 76(2-3):341-50. PubMed ID: 9923703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins.
    Ludes-Meyers JH; Kil H; Bednarek AK; Drake J; Bedford MT; Aldaz CM
    Oncogene; 2004 Jun; 23(29):5049-55. PubMed ID: 15064722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP.
    Linn H; Ermekova KS; Rentschler S; Sparks AB; Kay BK; Sudol M
    Biol Chem; 1997 Jun; 378(6):531-7. PubMed ID: 9224934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulating the Affinities of Phosphopeptides for the Human Pin1 WW Domain Using 4-Substituted Proline Derivatives.
    Huang KY; Horng JC
    Biochemistry; 2015 Oct; 54(40):6186-94. PubMed ID: 26406962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoluminescence from Single-Walled MoS
    Liu M; Hisama K; Zheng Y; Maruyama M; Seo S; Anisimov A; Inoue T; Kauppinen EI; Okada S; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2021 May; 15(5):8418-8426. PubMed ID: 33881302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the structure and function of W --> F WW domain variants: identification of a natively unfolded protein that folds upon ligand binding.
    Koepf EK; Petrassi HM; Ratnaswamy G; Huff ME; Sudol M; Kelly JW
    Biochemistry; 1999 Oct; 38(43):14338-51. PubMed ID: 10572009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. WW domains provide a platform for the assembly of multiprotein networks.
    Ingham RJ; Colwill K; Howard C; Dettwiler S; Lim CS; Yu J; Hersi K; Raaijmakers J; Gish G; Mbamalu G; Taylor L; Yeung B; Vassilovski G; Amin M; Chen F; Matskova L; Winberg G; Ernberg I; Linding R; O'donnell P; Starostine A; Keller W; Metalnikov P; Stark C; Pawson T
    Mol Cell Biol; 2005 Aug; 25(16):7092-106. PubMed ID: 16055720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The WW domain: linking cell signalling to the membrane cytoskeleton.
    Ilsley JL; Sudol M; Winder SJ
    Cell Signal; 2002 Mar; 14(3):183-9. PubMed ID: 11812645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. WW domain-containing proteins: retrospectives and the future.
    Salah Z; Alian A; Aqeilan RI
    Front Biosci (Landmark Ed); 2012 Jan; 17(1):331-48. PubMed ID: 22201747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.