These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3281905)

  • 41. Not as simple as just punching a hole.
    Fivaz M; Abrami L; Tsitrin Y; van der Goot FG
    Toxicon; 2001 Nov; 39(11):1637-45. PubMed ID: 11595627
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The propeptide of Clostridium septicum alpha toxin functions as an intramolecular chaperone and is a potent inhibitor of alpha toxin-dependent cytolysis.
    Sellman BR; Tweten RK
    Mol Microbiol; 1997 Aug; 25(3):429-40. PubMed ID: 9302006
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dimerization stabilizes the pore-forming toxin aerolysin in solution.
    van der Goot FG; Ausio J; Wong KR; Pattus F; Buckley JT
    J Biol Chem; 1993 Aug; 268(24):18272-9. PubMed ID: 7688743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein export by a gram-negative bacterium: production of aerolysin by Aeromonas hydrophila.
    Howard SP; Buckley JT
    J Bacteriol; 1985 Mar; 161(3):1118-24. PubMed ID: 3972770
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protease-nicked theta-toxin of Clostridium perfringens, a new membrane probe with no cytolytic effect, reveals two classes of cholesterol as toxin-binding sites on sheep erythrocytes.
    Ohno-Iwashita Y; Iwamoto M; Mitsui K; Ando S; Nagai Y
    Eur J Biochem; 1988 Sep; 176(1):95-101. PubMed ID: 2901352
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation.
    van der Goot FG; Hardie KR; Parker MW; Buckley JT
    J Biol Chem; 1994 Dec; 269(48):30496-501. PubMed ID: 7527031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dimer dissociation of the pore-forming toxin aerolysin precedes receptor binding.
    Fivaz M; Velluz MC; van der Goot FG
    J Biol Chem; 1999 Dec; 274(53):37705-8. PubMed ID: 10608828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glycophorins of bovine erythrocyte membranes. Isolation and preliminary characterization of the major component.
    Murayama J; Tomita M; Hamada A
    J Biochem; 1982 Jun; 91(6):1829-36. PubMed ID: 7118849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The cell specificity and biosynthesis of mouse glycophorins studied with monoclonal antibodies.
    Kasturi K; Harrison P
    Exp Cell Res; 1985 Mar; 157(1):253-64. PubMed ID: 3855753
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of glycophorins to Plasmodium falciparum merozoites.
    Perkins ME
    Mol Biochem Parasitol; 1984 Jan; 10(1):67-78. PubMed ID: 6363923
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lectins utilize glycophorin in cytoskeletal control of human erythrocyte discocyte in equilibrium echinocyte equilibria.
    Anderson RA; Lovrien R
    Prog Clin Biol Res; 1981; 56():207-29. PubMed ID: 6895787
    [No Abstract]   [Full Text] [Related]  

  • 52. Red cell membrane glycophorin labeling from within the lipid bilayer.
    Kahane I; Gitler C
    Science; 1978 Jul; 201(4353):351-2. PubMed ID: 663661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The relationship between the metabolism of sphingomyelin species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens alpha-toxin.
    Oda M; Matsuno T; Shiihara R; Ochi S; Yamauchi R; Saito Y; Imagawa H; Nagahama M; Nishizawa M; Sakurai J
    J Lipid Res; 2008 May; 49(5):1039-47. PubMed ID: 18263851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of isolated C-terminal fragment of theta-toxin (perfringolysin O) on toxin assembly and membrane lysis.
    Iwamoto M; Ohno-Iwashita Y; Ando S
    Eur J Biochem; 1990 Nov; 194(1):25-31. PubMed ID: 2253619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increased stability upon heptamerization of the pore-forming toxin aerolysin.
    Lesieur C; Frutiger S; Hughes G; Kellner R; Pattus F; van der Goot FG
    J Biol Chem; 1999 Dec; 274(51):36722-8. PubMed ID: 10593978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerolysin of Aeromonas sobria: evidence for formation of ion-permeable channels and comparison with alpha-toxin of Staphylococcus aureus.
    Chakraborty T; Schmid A; Notermans S; Benz R
    Infect Immun; 1990 Jul; 58(7):2127-32. PubMed ID: 1694819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for coupling of Clostridium perfringens alpha-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes.
    Sakurai J; Ochi S; Tanaka H
    Infect Immun; 1993 Sep; 61(9):3711-8. PubMed ID: 8395469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane glycophorins of Dantu blood group erythrocytes.
    Blumenfeld OO; Smith AJ; Moulds JJ
    J Biol Chem; 1987 Aug; 262(24):11864-70. PubMed ID: 3305497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin.
    Hong Y; Ohishi K; Inoue N; Kang JY; Shime H; Horiguchi Y; van der Goot FG; Sugimoto N; Kinoshita T
    EMBO J; 2002 Oct; 21(19):5047-56. PubMed ID: 12356721
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phospholipid metabolism induced by Clostridium perfringens alpha-toxin elicits a hot-cold type of hemolysis in rabbit erythrocytes.
    Ochi S; Hashimoto K; Nagahama M; Sakurai J
    Infect Immun; 1996 Sep; 64(9):3930-3. PubMed ID: 8751953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.