BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 32819279)

  • 1. Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings.
    Chen J; Zhang NN; Pan Q; Lin XY; Shangguan Z; Zhang JH; Wei GH
    BMC Plant Biol; 2020 Aug; 20(1):383. PubMed ID: 32819279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulfide and nitric oxide regulate the adaptation to iron deficiency through affecting Fe homeostasis and thiol redox modification in Glycine max seedlings.
    He XL; Zhang WQ; Zhang NN; Wen SM; Chen J
    Plant Physiol Biochem; 2023 Jan; 194():1-14. PubMed ID: 36368221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.
    Chen J; Wu FH; Shang YT; Wang WH; Hu WJ; Simon M; Liu X; Shangguan ZP; Zheng HL
    J Exp Bot; 2015 Nov; 66(21):6605-22. PubMed ID: 26208645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines.
    O'Rourke JA; Charlson DV; Gonzalez DO; Vodkin LO; Graham MA; Cianzio SR; Grusak MA; Shoemaker RC
    BMC Genomics; 2007 Dec; 8():476. PubMed ID: 18154662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The function of hydrogen sulphide in iron availability: Sulfur nutrient or signaling molecule?
    Chen J; Shangguan ZP; Zheng HL
    Plant Signal Behav; 2016 Jun; 11(6):e1132967. PubMed ID: 26906467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.
    Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T
    Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of hydrogen sulfide mitigation of iron deficiency-induced chlorosis in strawberry (Fragaria × ananassa) plants.
    Kaya C; Ashraf M
    Protoplasma; 2019 Mar; 256(2):371-382. PubMed ID: 30159606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.).
    Santos CS; Carvalho SM; Leite A; Moniz T; Roriz M; Rangel AO; Rangel M; Vasconcelos MW
    Plant Physiol Biochem; 2016 Sep; 106():91-100. PubMed ID: 27156133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean.
    Zhang NN; Zou H; Lin XY; Pan Q; Zhang WQ; Zhang JH; Wei GH; Shangguan ZP; Chen J
    Plant Cell Environ; 2020 May; 43(5):1130-1147. PubMed ID: 32012309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between hydrogen sulphide and rhizobia modulate the physiological and metabolism process during water deficiency-induced oxidative defense in soybean.
    Lin XY; Zhang NN; Yao BH; Zhang X; Liu WY; Zhang WQ; Zhang JH; Wei GH; Chen J
    Plant Cell Environ; 2022 Nov; 45(11):3249-3274. PubMed ID: 36043459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean.
    Qiu W; Dai J; Wang N; Guo X; Zhang X; Zuo Y
    Plant Physiol Biochem; 2017 Mar; 112():1-8. PubMed ID: 28012287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves.
    Moran Lauter AN; Peiffer GA; Yin T; Whitham SA; Cook D; Shoemaker RC; Graham MA
    BMC Genomics; 2014 Aug; 15():702. PubMed ID: 25149281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity.
    Alamri S; Ali HM; Khan MIR; Singh VP; Siddiqui MH
    Plant Physiol Biochem; 2020 Oct; 155():20-34. PubMed ID: 32738579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. γ-Aminobutyric Acid Suppresses Iron Transportation from Roots to Shoots in Rice Seedlings by Inducing Aerenchyma Formation.
    Zhu C; Qi Q; Niu H; Wu J; Yang N; Gan L
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33379335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots.
    Kabir AH; Rahman MA; Rahman MM; Brailey-Jones P; Lee KW; Bennetzen JL
    J Appl Microbiol; 2022 Nov; 133(5):2760-2778. PubMed ID: 35665578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma-aminobutyric acid enhances tolerance to iron deficiency by stimulating auxin signaling in cucumber (Cucumis sativusL.).
    Guo Z; Du N; Li Y; Zheng S; Shen S; Piao F
    Ecotoxicol Environ Saf; 2020 Apr; 192():110285. PubMed ID: 32035398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic reprogramming in nodules, roots, and leaves of symbiotic soybean in response to iron deficiency.
    Chu Q; Sha Z; Maruyama H; Yang L; Pan G; Xue L; Watanabe T
    Plant Cell Environ; 2019 Nov; 42(11):3027-3043. PubMed ID: 31283836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in physiological responses and MTP (metal tolerance protein) transcripts in soybean (Glycine max) exposed to differential iron availability.
    Haque AFMM; Rahman MA; Das U; Rahman MM; Elseehy MM; El-Shehawi AM; Parvez MS; Kabir AH
    Plant Physiol Biochem; 2022 May; 179():1-9. PubMed ID: 35303501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency.
    Gonzalo MJ; Lucena JJ; Hernández-Apaolaza L
    Plant Physiol Biochem; 2013 Sep; 70():455-61. PubMed ID: 23845824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.