BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32820079)

  • 1. Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models.
    Peng S; Wang X; Zhang L; He S; Zhao XS; Huang X; Chen C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21889-21895. PubMed ID: 32820079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase.
    Votaw KA; McCullagh M
    J Phys Chem B; 2019 Jan; 123(1):95-105. PubMed ID: 30525620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.
    Parsons ZD; Bland JM; Mullins EA; Eichman BF
    J Am Chem Soc; 2016 Sep; 138(36):11485-8. PubMed ID: 27571247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD.
    Rubinson EH; Metz AH; O'Quin J; Eichman BF
    J Mol Biol; 2008 Aug; 381(1):13-23. PubMed ID: 18585735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.
    Alseth I; Rognes T; Lindbäck T; Solberg I; Robertsen K; Kristiansen KI; Mainieri D; Lillehagen L; Kolstø AB; Bjørås M
    Mol Microbiol; 2006 Mar; 59(5):1602-9. PubMed ID: 16468998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkylpurine glycosylase D employs DNA sculpting as a strategy to extrude and excise damaged bases.
    Kossmann B; Ivanov I
    PLoS Comput Biol; 2014 Jul; 10(7):e1003704. PubMed ID: 24992034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex.
    Ahmadi A; Till K; Backe PH; Blicher P; Diekmann R; Schüttpelz M; Glette K; Tørresen J; Bjørås M; Rowe AD; Dalhus B
    Commun Biol; 2021 Jul; 4(1):876. PubMed ID: 34267321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures.
    Backe PH; Simm R; Laerdahl JK; Dalhus B; Fagerlund A; Okstad OA; Rognes T; Alseth I; Kolstø AB; Bjørås M
    J Struct Biol; 2013 Jul; 183(1):66-75. PubMed ID: 23623903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats.
    Dalhus B; Helle IH; Backe PH; Alseth I; Rognes T; Bjørås M; Laerdahl JK
    Nucleic Acids Res; 2007; 35(7):2451-9. PubMed ID: 17395642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the glycosylase search for damage from single-molecule fluorescence microscopy.
    Lee AJ; Warshaw DM; Wallace SS
    DNA Repair (Amst); 2014 Aug; 20():23-31. PubMed ID: 24560296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization and mutational studies of a novel 3-methlyadenine DNA glycosylase II from the hyperthermophilic Thermococcus gammatolerans.
    Jiang D; Zhang L; Dong K; Gong Y; Oger P
    DNA Repair (Amst); 2021 Jan; 97():103030. PubMed ID: 33360524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The substrate binding interface of alkylpurine DNA glycosylase AlkD.
    Mullins EA; Rubinson EH; Eichman BF
    DNA Repair (Amst); 2014 Jan; 13():50-4. PubMed ID: 24286669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unprecedented nucleic acid capture mechanism for excision of DNA damage.
    Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF
    Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
    Metz AH; Hollis T; Eichman BF
    EMBO J; 2007 May; 26(9):2411-20. PubMed ID: 17410210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depurination of N7-methylguanine by DNA glycosylase AlkD is dependent on the DNA backbone.
    Rubinson EH; Christov PP; Eichman BF
    Biochemistry; 2013 Oct; 52(42):7363-5. PubMed ID: 24090276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Dynamics of Damage Processing by Human DNA Glycosylase NEIL1.
    Kladova OA; Grin IR; Fedorova OS; Kuznetsov NA; Zharkov DO
    J Mol Biol; 2019 Mar; 431(6):1098-1112. PubMed ID: 30716333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).
    Hašplová K; Hudecová A; Magdolénová Z; Bjøras M; Gálová E; Miadoková E; Dušinská M
    Toxicol Lett; 2012 Jan; 208(1):76-81. PubMed ID: 22019460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.
    Mullins EA; Shi R; Kotsch LA; Eichman BF
    PLoS One; 2015; 10(5):e0127733. PubMed ID: 25978435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.