These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution. Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556 [TBL] [Abstract][Full Text] [Related]
3. Mapping 3D genome architecture through in situ DNase Hi-C. Ramani V; Cusanovich DA; Hause RJ; Ma W; Qiu R; Deng X; Blau CA; Disteche CM; Noble WS; Shendure J; Duan Z Nat Protoc; 2016 Nov; 11(11):2104-21. PubMed ID: 27685100 [TBL] [Abstract][Full Text] [Related]
4. A cookbook for DNase Hi-C. Gridina M; Mozheiko E; Valeev E; Nazarenko LP; Lopatkina ME; Markova ZG; Yablonskaya MI; Voinova VY; Shilova NV; Lebedev IN; Fishman V Epigenetics Chromatin; 2021 Mar; 14(1):15. PubMed ID: 33743768 [TBL] [Abstract][Full Text] [Related]
5. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z Nat Methods; 2015 Jan; 12(1):71-8. PubMed ID: 25437436 [TBL] [Abstract][Full Text] [Related]
14. BAT Hi-C maps global chromatin interactions in an efficient and economical way. Huang J; Jiang Y; Zheng H; Ji X Methods; 2020 Jan; 170():38-47. PubMed ID: 31442560 [TBL] [Abstract][Full Text] [Related]
15. HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution. Lee H; Seo PJ Mol Cells; 2021 Dec; 44(12):883-892. PubMed ID: 34963105 [TBL] [Abstract][Full Text] [Related]
16. Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Ramani V; Deng X; Qiu R; Lee C; Disteche CM; Noble WS; Shendure J; Duan Z Methods; 2020 Jan; 170():61-68. PubMed ID: 31536770 [TBL] [Abstract][Full Text] [Related]
17. Capturing Chromosome Conformation Across Length Scales. Yang L; Akgol Oksuz B; Dekker J; Gibcus JH J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744801 [TBL] [Abstract][Full Text] [Related]
18. The macro and micro of chromosome conformation capture. Goel VY; Hansen AS Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449 [TBL] [Abstract][Full Text] [Related]
19. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines. Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308 [TBL] [Abstract][Full Text] [Related]
20. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions. Padmarasu S; Himmelbach A; Mascher M; Stein N Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]