These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32820399)

  • 1. Targeted DNase Hi-C.
    Duan Z
    Methods Mol Biol; 2021; 2157():65-83. PubMed ID: 32820399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping 3D genome architecture through in situ DNase Hi-C.
    Ramani V; Cusanovich DA; Hause RJ; Ma W; Qiu R; Deng X; Blau CA; Disteche CM; Noble WS; Shendure J; Duan Z
    Nat Protoc; 2016 Nov; 11(11):2104-21. PubMed ID: 27685100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cookbook for DNase Hi-C.
    Gridina M; Mozheiko E; Valeev E; Nazarenko LP; Lopatkina ME; Markova ZG; Yablonskaya MI; Voinova VY; Shilova NV; Lebedev IN; Fishman V
    Epigenetics Chromatin; 2021 Mar; 14(1):15. PubMed ID: 33743768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Nat Methods; 2015 Jan; 12(1):71-8. PubMed ID: 25437436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Preparation of Improved Single-Cell Hi-C Libraries Using an Automated Liquid Handling System.
    Leung W; Nagano T
    Methods Mol Biol; 2022; 2532():201-214. PubMed ID: 35867251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C).
    Miele A; Dekker J
    Methods Mol Biol; 2009; 464():105-21. PubMed ID: 18951182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions.
    Stadhouders R; Kolovos P; Brouwer R; Zuin J; van den Heuvel A; Kockx C; Palstra RJ; Wendt KS; Grosveld F; van Ijcken W; Soler E
    Nat Protoc; 2013 Mar; 8(3):509-24. PubMed ID: 23411633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrogating Global Chromatin Interaction Network by High-Throughput Chromosome Conformation Capture (Hi-C) in Plants.
    Wang W; Niu L; Hou C
    Methods Mol Biol; 2022; 2484():55-67. PubMed ID: 35461444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation.
    Belaghzal H; Dekker J; Gibcus JH
    Methods; 2017 Jul; 123():56-65. PubMed ID: 28435001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BAT Hi-C maps global chromatin interactions in an efficient and economical way.
    Huang J; Jiang Y; Zheng H; Ji X
    Methods; 2020 Jan; 170():38-47. PubMed ID: 31442560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells.
    Ramani V; Deng X; Qiu R; Lee C; Disteche CM; Noble WS; Shendure J; Duan Z
    Methods; 2020 Jan; 170():61-68. PubMed ID: 31536770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution.
    Lee H; Seo PJ
    Mol Cells; 2021 Dec; 44(12):883-892. PubMed ID: 34963105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing Chromosome Conformation Across Length Scales.
    Yang L; Akgol Oksuz B; Dekker J; Gibcus JH
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.