These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 32820407)
1. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization. Szabo Q; Cavalli G; Bantignies F Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407 [TBL] [Abstract][Full Text] [Related]
2. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy. Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506 [TBL] [Abstract][Full Text] [Related]
3. Super-resolution Chromatin Visualization Using a Combined Method of Fluorescence In Situ Hybridization and Structured Illumination Microscopy in Solanum lycopersicum. Kuo P; Darbyshire A; Lambing C Methods Mol Biol; 2022; 2484():85-92. PubMed ID: 35461446 [TBL] [Abstract][Full Text] [Related]
4. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Markaki Y; Smeets D; Fiedler S; Schmid VJ; Schermelleh L; Cremer T; Cremer M Bioessays; 2012 May; 34(5):412-26. PubMed ID: 22508100 [TBL] [Abstract][Full Text] [Related]
5. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin. Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy. Markaki Y; Smeets D; Cremer M; Schermelleh L Methods Mol Biol; 2013; 950():43-64. PubMed ID: 23086869 [TBL] [Abstract][Full Text] [Related]
8. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Brown JM; De Ornellas S; Parisi E; Schermelleh L; Buckle VJ Nat Protoc; 2022 May; 17(5):1306-1331. PubMed ID: 35379945 [TBL] [Abstract][Full Text] [Related]
9. Developing novel methods to image and visualize 3D genomes. Ma T; Chen L; Shi M; Niu J; Zhang X; Yang X; Zhanghao K; Wang M; Xi P; Jin D; Zhang M; Gao J Cell Biol Toxicol; 2018 Oct; 34(5):367-380. PubMed ID: 29577183 [TBL] [Abstract][Full Text] [Related]
10. Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA. Mateo LJ; Sinnott-Armstrong N; Boettiger AN Nat Protoc; 2021 Mar; 16(3):1647-1713. PubMed ID: 33619390 [TBL] [Abstract][Full Text] [Related]
12. 3D Immuno-DNA Fluorescence In Situ Hybridization (FISH) for Detection of HIV-1 and Cellular Genes in Primary CD4 Lucic B; Wegner J; Stanic M; Jost KL; Lusic M Methods Mol Biol; 2021; 2157():239-249. PubMed ID: 32820408 [TBL] [Abstract][Full Text] [Related]
13. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization. Clements CS; Bikkul U; Ahmed MH; Foster HA; Godwin LS; Bridger JM Methods Mol Biol; 2016; 1411():387-406. PubMed ID: 27147055 [TBL] [Abstract][Full Text] [Related]
14. Visualization of Polytene Chromatin in Mosquito Cell Nuclei Using Three-Dimensional Fluorescence In Situ Hybridization. Bondarenko SM; Liang J; Sharakhova MV; Sharakhov IV Cold Spring Harb Protoc; 2022 Dec; 2022(12):599-605. PubMed ID: 35960625 [TBL] [Abstract][Full Text] [Related]
15. 3D Multicolor DNA FISH Tool to Study Nuclear Architecture in Human Primary Cells. Marasca F; Cortesi A; Manganaro L; Bodega B J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065142 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural visualization of 3D chromatin folding using volume electron microscopy and DNA in situ hybridization. Trzaskoma P; Ruszczycki B; Lee B; Pels KK; Krawczyk K; Bokota G; Szczepankiewicz AA; Aaron J; Walczak A; Śliwińska MA; Magalska A; Kadlof M; Wolny A; Parteka Z; Arabasz S; Kiss-Arabasz M; Plewczyński D; Ruan Y; Wilczyński GM Nat Commun; 2020 May; 11(1):2120. PubMed ID: 32358536 [TBL] [Abstract][Full Text] [Related]
17. Visualizing Genome Reorganization Using 3D DNA FISH. Jubb A; Boyle S Methods Mol Biol; 2020; 2148():85-95. PubMed ID: 32394376 [TBL] [Abstract][Full Text] [Related]
18. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure. Krufczik M; Sievers A; Hausmann A; Lee JH; Hildenbrand G; Schaufler W; Hausmann M Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28481278 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence In Situ Hybridization (FISH) and Immunolabeling on 3D Preserved Nuclei. Bey TD; Koini M; Fransz P Methods Mol Biol; 2018; 1675():467-480. PubMed ID: 29052208 [TBL] [Abstract][Full Text] [Related]
20. Single-cell detection of primary transcripts, their genomic loci and nuclear factors by 3D immuno-RNA/DNA FISH in T cells. Salataj E; Spilianakis CG; Chaumeil J Front Immunol; 2023; 14():1156077. PubMed ID: 37215121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]