These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32820411)

  • 1. An Algorithm for the Analysis of the 3D Spatial Organization of the Genome.
    Gregoretti F; Cortesi A; Oliva G; Bodega B; Antonelli L
    Methods Mol Biol; 2021; 2157():299-320. PubMed ID: 32820411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation, 3D Reconstruction, and Analysis of PcG Proteins in Fluorescence Microscopy Images in Different Cell Culture Conditions.
    Gregoretti F; Lucini F; Cesarini E; Oliva G; Lanzuolo C; Antonelli L
    Methods Mol Biol; 2023; 2655():147-169. PubMed ID: 37212995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation and detection of fluorescent 3D spots.
    Ram S; Rodríguez JJ; Bosco G
    Cytometry A; 2012 Mar; 81(3):198-212. PubMed ID: 22354758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing.
    Gué M; Messaoudi C; Sun JS; Boudier T
    Cytometry A; 2005 Sep; 67(1):18-26. PubMed ID: 16082715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks.
    Lin G; Adiga U; Olson K; Guzowski JF; Barnes CA; Roysam B
    Cytometry A; 2003 Nov; 56(1):23-36. PubMed ID: 14566936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Genome Reorganization Using 3D DNA FISH.
    Jubb A; Boyle S
    Methods Mol Biol; 2020; 2148():85-95. PubMed ID: 32394376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture.
    Russell RA; Adams NM; Stephens DA; Batty E; Jensen K; Freemont PS
    Biophys J; 2009 Apr; 96(8):3379-89. PubMed ID: 19383481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei.
    Poulet A; Arganda-Carreras I; Legland D; Probst AV; Andrey P; Tatout C
    Bioinformatics; 2015 Apr; 31(7):1144-6. PubMed ID: 25416749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Multicolor DNA FISH Tool to Study Nuclear Architecture in Human Primary Cells.
    Marasca F; Cortesi A; Manganaro L; Bodega B
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.
    Kayasandik CB; Labate D
    J Neurosci Methods; 2016 Dec; 274():61-70. PubMed ID: 27688018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of nuclear organization with TANGO, software for high-throughput quantitative analysis of 3D fluorescence microscopy images.
    Ollion J; Cochennec J; Loll F; Escudé C; Boudier T
    Methods Mol Biol; 2015; 1228():203-22. PubMed ID: 25311132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.
    Arslan S; Ersahin T; Cetin-Atalay R; Gunduz-Demir C
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1121-31. PubMed ID: 23549886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FISH Finder: a high-throughput tool for analyzing FISH images.
    Shirley JW; Ty S; Takebayashi S; Liu X; Gilbert DM
    Bioinformatics; 2011 Apr; 27(7):933-8. PubMed ID: 21310746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput DNA FISH (hiFISH).
    Finn E; Misteli T; Pegoraro G
    Methods Mol Biol; 2022; 2532():245-274. PubMed ID: 35867253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy.
    Štěpka K; Matula P; Matula P; Wörz S; Rohr K; Kozubek M
    Cytometry A; 2015 Aug; 87(8):759-72. PubMed ID: 26033916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.
    Ong LL; Wang M; Dauwels J; Asada HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5526-9. PubMed ID: 25571246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal DNA cytometry: a contour-based segmentation algorithm for automated three-dimensional image segmentation.
    Beliën JA; van Ginkel HA; Tekola P; Ploeger LS; Poulin NM; Baak JP; van Diest PJ
    Cytometry; 2002 Sep; 49(1):12-21. PubMed ID: 12210606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal 2D reconstruction of cell nucleus from Fluorescence Confocal Microscopy images with anisotropic filtering.
    Rodrigues I; Sanches J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2197-200. PubMed ID: 19163134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.