These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32820447)

  • 1. NH
    Azis K; Ntougias S; Melidis P
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33837-33843. PubMed ID: 32820447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation reduction potential automatic control potential of intermittently aerated membrane bioreactor for nitrification and denitrification.
    Choi C; Kim M; Lee K; Park H
    Water Sci Technol; 2009; 60(1):167-73. PubMed ID: 19587414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system.
    Tanwar P; Nandy T; Ukey P; Manekar P
    Bioresour Technol; 2008 Nov; 99(16):7630-5. PubMed ID: 18358714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring pH and ORP in a SHARON reactor.
    Claros J; Serralta J; Seco A; Ferrer J; Aguado D
    Water Sci Technol; 2011; 63(11):2505-12. PubMed ID: 22049741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of controlling nitrification in predenitrification plants using DO, pH and ORP sensors.
    Ma Y; Peng Y; Yuan Z; Wang S; Wu X
    Water Sci Technol; 2006; 53(4-5):235-43. PubMed ID: 16722074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles.
    Won SG; Ra CS
    Water Res; 2011 Jan; 45(1):171-8. PubMed ID: 20822790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH and oxidation-reduction potential control strategy for optimization of nitrogen removal in an alternating aerobic-anoxic system.
    Kim H; Hao OJ
    Water Environ Res; 2001; 73(1):95-102. PubMed ID: 11558309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control.
    Yan S; Cheng KY; Ginige MP; Zheng G; Zhou L; Kaksonen AH
    J Hazard Mater; 2021 Jan; 402():123770. PubMed ID: 33254781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pH and H
    Wang J; Song M; Chen B; Wang L; Zhu R
    Chemosphere; 2017 Oct; 184():1003-1011. PubMed ID: 28658735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercross real-time control strategy in alternating activated sludge process for short-cut biological nitrogen removal treating domestic wastewater.
    Wang S; Zhang S; Peng C; Akio T
    J Environ Sci (China); 2008; 20(8):957-63. PubMed ID: 18817075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond signal quality: The value of unmaintained pH, dissolved oxygen, and oxidation-reduction potential sensors for remote performance monitoring of on-site sequencing batch reactors.
    Schneider MY; Carbajal JP; Furrer V; Sterkele B; Maurer M; Villez K
    Water Res; 2019 Sep; 161():639-651. PubMed ID: 31254889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of a twice-fed sequencing batch reactor treating swine wastewater under control of aeration intensity.
    Han Z; Wu W; Chen Y; Zhu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):361-70. PubMed ID: 17365303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line control of a SBR system for nitrogen removal from industrial wastewater.
    Andreottola G; Foladori P; Ragazzi M
    Water Sci Technol; 2001; 43(3):93-100. PubMed ID: 11381938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using oxidation-reduction potential (ORP) and pH value for process control of shortcut nitrification-denitrification.
    Gao DW; Peng YZ; Liang H; Wang P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(12):2933-42. PubMed ID: 14672326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New contributions to the ORP & DO time profile characterization to improve biological nutrient removal.
    Martín de la Vega PT; Martínez de Salazar E; Jaramillo MA; Cros J
    Bioresour Technol; 2012 Jun; 114():160-7. PubMed ID: 22483572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen removal from pharmaceutical manufacturing wastewater via nitrite and the process optimization with on-line control.
    Li YZ; Peng CY; Peng YZ; Wang P
    Water Sci Technol; 2004; 50(6):25-30. PubMed ID: 15536986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental considerations on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal processes.
    Spagni A; Buday J; Ratini P; Bortone G
    Water Sci Technol; 2001; 43(11):197-204. PubMed ID: 11443963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsensor determination of multiple microbial processes in an oxygen-based membrane aerated biofilm.
    Tan S; Yu T; Shi HC
    Water Sci Technol; 2014; 69(5):909-14. PubMed ID: 24622536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal.
    Wu L; Shen M; Li J; Huang S; Li Z; Yan Z; Peng Y
    Environ Pollut; 2019 Nov; 254(Pt A):112965. PubMed ID: 31401520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.