BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32820606)

  • 1. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms.
    Walker AA; Robinson SD; Hamilton BF; Undheim EAB; King GF
    Proteomics; 2020 Sep; 20(17-18):e1900324. PubMed ID: 32820606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes.
    Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM
    Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals.
    Petras D; Heiss P; Harrison RA; Süssmuth RD; Calvete JJ
    J Proteomics; 2016 Sep; 146():148-64. PubMed ID: 27318176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations.
    Damm M; Hempel BF; Süssmuth RD
    Toxins (Basel); 2021 Jun; 13(6):. PubMed ID: 34204565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures.
    Fox JW; Serrano SM
    Proteomics; 2008 Feb; 8(4):909-20. PubMed ID: 18203266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity.
    Modahl CM; Frietze S; Mackessy SP
    J Proteomics; 2018 Sep; 187():223-234. PubMed ID: 30092380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis).
    Pla D; Sanz L; Sasa M; Acevedo ME; Dwyer Q; Durban J; Pérez A; Rodriguez Y; Lomonte B; Calvete JJ
    J Proteomics; 2017 Jan; 152():1-12. PubMed ID: 27777178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snake venomics - from low-resolution toxin-pattern recognition to toxin-resolved venom proteomes with absolute quantification.
    Calvete JJ
    Expert Rev Proteomics; 2018 Jul; 15(7):555-568. PubMed ID: 30005583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity.
    Rokyta DR; Ward MJ
    Toxicon; 2017 Mar; 128():23-37. PubMed ID: 28115184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling snake venom complexity with 'omics' approaches: challenges and perspectives.
    Zelanis A; Tashima AK
    Toxicon; 2014 Sep; 87():131-4. PubMed ID: 24878375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom.
    Tan CH; Tan KY; Tan NH
    J Proteomics; 2016 Jul; 144():33-8. PubMed ID: 27282922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting.
    Li R; Yu H; Xue W; Yue Y; Liu S; Xing R; Li P
    J Proteomics; 2014 Jun; 106():17-29. PubMed ID: 24747124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric analysis to unravel the venom proteome composition of Indian snakes: opening new avenues in clinical research.
    Chanda A; Mukherjee AK
    Expert Rev Proteomics; 2020 May; 17(5):411-423. PubMed ID: 32579411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Investigations of Two Pakistani
    Manuwar A; Dreyer B; Böhmert A; Ullah A; Mughal Z; Akrem A; Ali SA; Schlüter H; Betzel C
    Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33105837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Venomics: unravelling the complexity of animal venoms with mass spectrometry.
    Escoubas P; Quinton L; Nicholson GM
    J Mass Spectrom; 2008 Mar; 43(3):279-95. PubMed ID: 18302316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry.
    Calderón-Celis F; Cid-Barrio L; Encinar JR; Sanz-Medel A; Calvete JJ
    J Proteomics; 2017 Jul; 164():33-42. PubMed ID: 28579478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Depth Venome of the Brazilian Rattlesnake Crotalus durissus terrificus: An Integrative Approach Combining Its Venom Gland Transcriptome and Venom Proteome.
    Wiezel GA; Shibao PYT; Cologna CT; Morandi Filho R; Ueira-Vieira C; De Pauw E; Quinton L; Arantes EC
    J Proteome Res; 2018 Nov; 17(11):3941-3958. PubMed ID: 30270628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus.
    Madio B; Undheim EAB; King GF
    J Proteomics; 2017 Aug; 166():83-92. PubMed ID: 28739511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Toxin Evolution: Venom Protein Transcript Sequencing and Transcriptome-Guided High-Throughput Proteomics.
    Modahl CM; Durban J; Mackessy SP
    Methods Mol Biol; 2020; 2068():97-127. PubMed ID: 31576525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors.
    Liu CC; Lin CC; Hsiao YC; Wang PJ; Yu JS
    J Proteomics; 2018 Sep; 187():59-68. PubMed ID: 29929037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.